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Abstract—As 5G networks proliferate globally, the need for
accurate, reliable, and scalable positioning solutions has become
increasingly critical across industries such as IoT, healthcare, and
autonomous systems. This paper comprehensively reviews current
and emerging positioning techniques within 5G, exploring the
advancements enabled by sidelink communication, Reconfigurable
Intelligent Surfaces (RIS), machine learning, and massive MIMO.
We examine the evolution of 5G positioning as defined by
key 3GPP releases, and provide a comparative analysis of the
techniques in terms of accuracy, cost, and robustness. The review
also highlights key challenges, including non-line-of-sight (NLOS)
environments, real-time data processing, and security concerns,
which must be addressed for widespread adoption. Finally, we
discuss future directions for 5G-Advanced and 6G positioning
technologies, offering insights into potential improvements and
the ongoing evolution of the field.

Index Terms—5G, Positioning, RIS, Machine Learning, Massive
MIMO, Beamforming, Hybrid Techniques, Internet of Things.

I. INTRODUCTION

RECENT years have seen a remarkable proliferation of
cellular communication technologies and new devices,

some with very sophisticated capabilities while others are very
simple, giving rise to a plethora of use cases. This proliferation
showcases how connectivity is revolutionizing various aspects
of our daily lives. This paper focuses on positioning in
5G and beyond, discussing emerging technologies and their
applications.

Positioning has been extensively studied over the past
thirty years, driven by the demand for location-based services
across various applications. Researchers have proposed various
techniques for precise positioning, considering both accuracy
requirements and device capabilities. For example, in the
Internet of Things (IoT) domain, use cases such as asset
tracking, smart cities, and industrial automation have different
requirements. Asset tracking relies on accurate and real-time
positioning for streamlined logistics. Smart cities leverage
location data for intelligent traffic management, waste disposal,
or public safety, with a focus on accuracy and scalability.
In industrial automation, the emphasis is on precise location
data to enhance process optimization and ensure personnel
safety. Beyond the IoT realm, several use cases, like emergency
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services or consumer navigation, also showcase diverse posi-
tioning requirements. While emergency services prioritize rapid
and precise location data for swift response times, consumer
navigation relies on accurate positioning for delivering precise
directions and location-based services, with an added emphasis
on security and privacy. Moreover, several industries such as
healthcare and autonomous driving are increasingly dependent
on accurate positioning. In healthcare, real-time location data is
crucial for monitoring equipment, patients, and staff, improving
efficiency and safety. In autonomous driving, precise and
low-latency positioning is essential for ensuring safety and
operational efficiency.

To satisfy the requirements of the different positioning use
cases, researchers have explored the use of multiple wireless
technologies, such as GNSS (Global Navigation Satellite
System), cellular, Wi-Fi, and Bluetooth. However, GNSS
struggles with providing accurate indoor positioning, especially
within buildings, while Wi-Fi and Bluetooth exhibit limited
performance outdoors and with moving devices, making them
less suitable for dynamic environments. More recently, employ-
ing 5G New Radio (NR) cellular networks for positioning has
become a topic of significant interest. 5G cellular technology
seems to offer the ideal tradeoff both indoors and outdoors,
even with mobile objects. Furthermore, 5G is designed to
accommodate high device density and global needs, which
are beneficial for massive IoT. Advanced techniques such as
Massive MIMO, Reconfigurable Intelligent Surfaces (RIS), and
machine learning (ML)-aided positioning are contributing to
substantial improvements in accuracy, efficiency, and reliability,
especially in complex environments.

5G is regulated by the 3rd Generation Partnership Project
(3GPP), which periodically publishes Releases (i.e., sets of
standards), the first one being Rel-15 and the current one Rel-18.
3GPP has standardized several positioning methods. Still, this
domain is in constant evolution, and researchers have directed
their attention toward proposing novel positioning solutions in
complex scenarios, especially where a direct line-of-sight (LOS)
between the device and the interconnected node is unavailable.
Nevertheless, its challenges such as achieving low latency,
providing real-time data, and ensuring the security and privacy
of positioning information remain critical challenge obstacles
that need to be addressed. Techniques like sidelink positioning
or Reconfigurable Intelligent Surface (RIS)-aided positioning,
or even hybrid techniques that combine multiple technologies
to enhance positioning performance in complex environments,
have also been extensively explored in the literature, for a
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possible standardization by the 3GPP in a near future either in
5G-Advanced or 6G.

Given the current trendiness of the topic, numerous surveys
on positioning have been proposed in the literature. First,
surveys like [1]–[6] provide comprehensive insights into
localization but notably lack a focus on 5G NR. On the other
hand, references such as [7]–[9], while focusing on 5G, may
be considered outdated. Other surveys such as [10], [11], are
too specific to a particular technology (e.g., Massive MIMO).
The paper most closely aligned with our objectives is [12]. It
is a recent and very valuable survey on cellular positioning,
with a strong focus on machine learning-aided techniques for
localization. However, it does not include the latest release of
3GPP (Rel-18), and it misses out on important information
about recent positioning techniques (e.g., Sidelink). Finally,
several recent surveys are claiming to be on 6G positioning
[13]–[15]. Since 3GPP has not yet published a release on 6G,
all those surveys are exploratory.

To address these gaps, this paper offers a thorough and
current examination of 5G cellular positioning, emphasizing
a diverse array of use cases, including several in IoT. It
reviews the latest progress on 3GPP 5G positioning including
requirements for different use cases, the supported positioning
techniques, and the items under study at 3GPP. It is worth
noting that for each emerging positioning technique, we
designate one already published survey as a reference point.
Then, we specifically focus on papers not covered by that
survey, to ensure that we minimize redundancy and that
we contribute original information to the existing body of
knowledge. Specifically, the major contributions of this paper
are the following:

• Summarize the latest advancements in 3GPP releases
for positioning, with a focus on the characteristics of the
different types of devices and the positioning requirements
of the different 5G use cases.

• Provide a comprehensive review of the emerging po-
sitioning techniques in 5G networks, namely sidelink,
carrier phase, RIS-aided, ML-aided, massive MIMO,
beamforming, and hybrid techniques. Some of those
techniques could be adopted by 3GPP for 5G-Advanced
or 6G.

• Present the major challenges hindering the usage of 5G
positioning techniques in practice and the state-of-the-art
literature trying to address them.

The paper is structured as follows (see Fig. 1): Section II
provides a summary of the latest releases from 3GPP and
presents the landscape of 5G services. In Section III, 5G
positioning architecture, requirements, and common techniques
are presented. In Section IV, we review emerging positioning
techniques such as carrier phase, sidelink, RIS-aided, and ML-
aided positioning, followed by emerging use cases in Section V.
Finally, we discuss the practical challenges of implementing IoT
positioning techniques in commercial and private 5G networks
in Section VI. Section VII concludes the paper, followed by a
list of abbreviations and acronyms.

2. 5G RELEASES AND SERVICES

3. POSITIONING IN 5G NETWORKS

4. EMERGING TECHNIQUES

Architecture, Metrics and Requirements, Physical-layer
Measurements, Conventional Techniques, UE Capabilities
and their impact on Positioning

Sidelink, Carrier Phase, RIS-Aided, ML-Aided, Massive
MIMO/Beamforming, Joint/Hybrid Techniques

5. EMERGING USE CASES
Velocity Tracking and 3D Positioning

6. CHALLENGES
Real-time Data Collection/Processing, Scalability and
Signalling Capability, UE Positioning in Obstructed
Environments, Security and Privacy.

3GPP Releases Evolution, 5G Services and Requirements,
and Improvements on 5G Devices

7. CONCLUSION

1. INTRODUCTION
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Fig. 1. Article Outline.

II. 5G RELEASES AND SERVICES

This section offers a general overview of the 5G landscape,
covering key developments and advancements. It starts with
the 3GPP Releases Evolution, outlining the milestones in
standardization that have shaped 5G. Next, it discusses 5G ser-
vice requirements, highlighting the performance requirements
needed to support diverse applications. Finally, it explores
Improvements on 5G Devices in Rel-18, detailing recent
enhancements in devices’ capabilities.

A. 3GPP Releases Evolution

The 3rd Generation Partnership Project (3GPP) is an organi-
zation that creates technical standards for mobile technologies,
organized into releases, which include study items and work
items. A study item involves feasibility studies or technical
analyses focused on specific topics. Its purpose is to explore
new ideas, technologies, or requirements and identify potential
areas for standardization. A work item refers to a set of
tasks focused on addressing specific features, improvements, or
changes as part of the continuous standardization process. These
activities lead to the creation of technical specifications [16].

We first provide a brief description of each of the releases
in this section, highlighting their respective key milestones.
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In 2015, the work on 5G NR began, aiming to create a new
radio access technology and focus on non-standalone (NSA)
5G architecture, where the control plane is 5G and the data
plane is Long Term Evolution (LTE). The completion of the
Rel-15 NR specifications occurred in Q4 2018.

Rel-16 further advanced the development of NR to meet all
the requirements of 5G. Rel-16 introduced standalone (SA)
5G architecture, sidelink communication, advancements in
industrial IoT and vehicle-to-everything (V2X) communica-
tion, improvements in multiple-input multiple-output (MIMO)
technology, positioning, and power-saving features for user
equipment (UE). Rel-16 was finalized by Q2 of 2020.

In Q2 2022, the completion of Release 17 brought several
important updates. These updates include improvements to
sidelink communication, reduced capability devices for NR,
expanded NR operation up to 71 GHz, Radio Access Network
(RAN) slicing, improvements in coverage, support for private
networks, and advancements in positioning technology.

The work on 5G Advanced was initiated by Re.18 which
includes artificial intelligence (AI) and machine learning
(ML) technologies, device complexity reduction, positioning
improvement, and NR Support for unmanned aerial vehicles
(UAV). Rel-18 was completed in Q2 2024.

The plan for Rel-19 started in Q2 2021, is a significant
step for 5G Advanced, aiming to improve 5G capabilities
and lay the foundation for a smooth transition to 6G. The
main goal of Rel-19 is to build a flexible and robust mobile
network, with a specific focus on extended reality (XR) and
virtual reality (VR) applications. It is expected to strengthen
data security, improve mobility, and prioritize the use of AI
and ML to optimize network management and configuration,
among other aspects [17]. The Rel-20 plan, which kicked off
in Q3 2024, continues the study of 6G planning by introducing
new capabilities such as efficient multi-user MIMO and
dynamic spectrum sharing, improving network performance,
and supporting cutting-edge applications like XR and cloud
gaming. It also uses AI and ML to improve mobility and reduce
latency [18]. Fig. 2 shows a timeline for the 5G releases.

B. 5G Service Requirements

5G services support a large and diverse range of use cases,
which are each characterized by a set of requirements. 3GPP
has proposed to categorize these requirements into different
services (along with their operating devices’ types), which we
summarize in the following:

The Enhanced Mobile Broadband (eMBB) service was
introduced in 3GPP Rel-15. It offers high data rates to cater to
data-intensive applications such as virtual reality and ultra-HD
video streaming. The key factors to consider in this service
are augmented bandwidth, low latency, and high throughput.

Ultra-Reliable Low Latency Communications (URLLC) was
also introduced in Rel-15. It offers extremely low latency
and high reliability to relatively low-rate mission-critical
applications such as autonomous driving, remote surgery, and
drone control. The primary goals to consider in this service are
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Fig. 2. Timeline of 5G Releases.

the achievement of extremely low latency and high reliability,
all of which are essential for ensuring real-time responsiveness
and uninterrupted connectivity.

Massive Machine Type Communications (mMTC) supports
a vast number of devices concurrently, thereby facilitating the
implementation of low-power, wide-area IoT (LPWA) appli-
cations such as smart metering and environmental monitoring.
The focus of this service which was also introduced in Rel-15,
is on low power consumption, extended coverage, and the
ability to support a significant number of devices with limited
capability. mMTC service comprises two subcategories: (i)
Long Term Evolution for Machines (LTE-M), introduced in
Rel-13, and (ii) Narrowband IoT (NB-IoT), introduced in Rel-
14. These two sub-categories differ in many aspects such as
mobility, coverage, bandwidth, and transmission mode. Rel-15
recognized that NB-IoT and LTE-M would continue evolving
as part of the 5G specifications due to their support for unique
use cases [19].

As 5G networks developed further, 3GPP continued to
support a range of 5G devices in a variety of usage scenarios.
3GPP Release 18 attempts to investigate and apply customized
functionalities in this regard to improve and expand 5G
capabilities. In addition to supporting conventional smartphones,
the focus also encompasses a wide range of various 5G devices,
such as cloud gaming consoles, low-complexity UEs, vehicle-
to-everything (V2X), unmanned aerial vehicles (UAVs), and
extended reality (XR) systems.

The emergence of devices such as wearables and industrial
wireless sensors, presents a challenge in categorizing them
under the legacy mMTC service. As a result, a new category
of 5G devices, referred to as Reduced Capability (RedCap),
has been introduced in 3GPP Rel-17 to accommodate these
use cases [20]. RedCap devices are characterized by reduced
throughput and bandwidth, relaxed latency requirements, and
varying battery life (from days to years), depending on the
specific use case. For example, RedCap devices can operate
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TABLE I
5G SERVICES, CHARACTERISTICS, USE CASE, AND POSITIONING ACCURACY REQUIREMENT EXAMPLES

Characteristic
5G Services

URLLC eMBB RedCap
mMTC

LTE-M NB-IoT

Maximum Data Rate (downlink) 100 Mbps 20 Gbps 150 Mbps 4 Mbps 250 kbps

Maximum Data Rate (uplink) Not defined 10 Gbps 50 Mbps 1 Mbps 180 kbps

Minimum Latency 1 ms 4 ms 100 ms 10 ms 1.6 sec

Maximum Bandwidth (Frequency Range 1) 100 MHz 100 MHz 20 MHz 5 MHz 200 kHz

Maximum Bandwidth (Frequency Range 2) 2 GHz 2 GHz 100 MHz - -

Coverage (Maximum Coupling Loss) Not defined 144 dB 140 dB 156 dB 164 dB

Battery Lifetime Varies Days Days to Years 5+ Years 10+ Years

Mobility Supported Supported Supported Supported Not Supported

Transmission Mode Half/Full Duplex Half/Full Duplex Half/Full Duplex Half/Full Duplex Half Duplex

Use Case Example Remote Surgery Augmented Reality Wearables Asset Tracking Smart Metering

Positioning Accuracy * 20 cm 1 m 3 m - -

* Horizontal requirement for commercial use case based on 3GPP Rel-18.

with a maximum bandwidth of 20 MHz in the carrier frequency
range 1 (FR1) below 7 GHz. In comparison, eMBB and URLLC
devices can have a maximum bandwidth of 100 MHz, while
mMTC devices can have a maximum bandwidth of 5 MHz. In
Rel-18, 3GPP has requested the industry groups to examine
a bandwidth limit of 5 MHz for RedCap [21]. This suggests
that RedCap may potentially replace LTE-M in the coming
years. FR2 uses a millimeter wavelength and operates above 24
GHz. Currently, mMTC only operates with FR1 because the
minimum channel bandwidth specified for FR2 is 50 MHz [22].

Table I outlines the most recent requirements for the different
5G services. It also provides an example of a use case for each
service, listing their key characteristics. For example, critical
applications such as remote surgery and autonomous vehicles
require extremely low latency and high-speed mobility but can
tolerate lower throughput. On the other hand, smart metering
use cases require extensive coverage, and long battery life,
and can tolerate latency and mobility. Note that the coverage
requirement in Table I is determined by the Maximum Coupling
Loss (MCL), which is a metric measured in decibels (dB), that
indicates the maximum attenuation of the radio signal between
transmitting and receiving nodes. A higher MCL value indicates
a larger area of coverage.

3GPP has recently started a discussion about Ambient IoT
(AIoT), which encompasses the very low-end IoT use cases
with requirements for ultra-low complexity UEs, ultra-low
power consumption, and small form factor. These requirements
can be fulfilled by battery-less (zero-energy) UEs or UEs with
limited energy storage capability. However, current cellular
technologies are unable to meet AIoT power consumption and
UE cost/complexity criteria, necessitating the development of
new technologies under NR in Rel-19 or later and 6G [23].
As it is a premature service, there is no clear view of its
characteristics. Thus, we chose not to include it in Table I.

C. Improvements on 5G Devices in Rel-18

3GPP Rel-18 focuses on significant enhancements for 5G
devices, including enhancing support for cloud gaming and
XR on 5G NR networks, requiring high data rates and low
latency. Ongoing research is exploring scheduling and resource
allocation systems, as well as UE power-saving techniques
tailored for cloud gaming and XR services. To effectively
handle the traffic from these applications, 3GPP is exploring
ways to enhance RAN’s awareness of XR, optimizing network
parameters, adapting to varying traffic loads, and ensuring
uninterrupted connectivity [24].

III. POSITIONING IN 5G NETWORKS

The demand for accurate positioning has grown due to the
need for location-based services in sectors such as industrial
IoT and autonomous driving. The introduction of 5G tech-
nology offers an opportunity to provide precise positioning
for applications requiring robust, flexible, and cost-effective
solutions globally. This section presents the basics of 3GPP
5G positioning.

A. Positioning Architecture in 5G Networks

The 5G location service architecture comprises four main
components across all releases (see Fig. 3): (i) User Equipment
(UE), which is capable of receiving the positioning reference
signal (PRS) and/or transmitting the sounding reference signal
(SRS). In addition, some UEs are capable of conducting
physical-layer measurements, reporting them to the 5G core
network (5GC), and computing their location. (ii) The Radio
Access Network (NG-RAN), where the serving gNodeB
(gNB) allocates the physical resources of the corresponding
positioning reference signal, receives SRS and/or transmits PRS,
conducts physical-layer measurements and reports them to the
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location server. (iii) The location server, which is an entity
in the 5GC called Location Management Function (LMF), its
function is to initiates the positioning process communicates
with the UE or the RAN, receives the reported physical-layer
measurements, and computes the UE’s location. (iv) Location
Service Client (LSC), which connects third-party applications to
the core network and provides customers with location service
through open Application Programming Interfaces (APIs), such
as real-time location push, map management, track query, and
location data analysis [25].

LMF LSC

NG-RAN UE

3rd-Party 

Apps

5G Network
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Fig. 3. High-Level Architecture of the 5G Location Service in 3GPP.

Every positioning technique follows a standard procedure
that includes the request, signal transmission, physical-layer
measurement, reporting, and computation. Network-based tech-
niques such as UL-TDOA and AOA have similar procedures,
differing only in the type of measurement used (time versus
angle). These procedures are thoroughly outlined in 3GPP TS
38.305 [26].

B. Positioning Metrics and Requirements in 3GPP

The two key metrics of performance in positioning are accu-
racy and latency. Accuracy commonly denotes the difference
between the calculated location and the actual one, while
latency indicates the time required for end-to-end positioning.
Consequently, 3GPP studies and research focus on reducing
both positioning error and latency. In this subsection, we
identify the accuracy and latency requirements set by 3GPP for
various use cases across consecutive releases. It is important to
note that when assessing the accuracy of a positioning system,
the 3GPP standard differentiates between two types: horizon-
tal and vertical. Horizontal positioning pertains to latitude
and longitude, encompassing two dimensions, while vertical
positioning incorporates altitude to achieve three dimensions
(3D). As with most existing research in the literature, this
paper focuses on two-dimensional (horizontal) positioning. 3D
positioning is addressed separately in Section V.

For baseline devices (i.e., eMBB service), the desired level
of accuracy for horizontal positioning in Rel-16 is set in the
commercial use case to below three meters for indoor settings
and below ten meters for outdoor settings, to achieve this level
of accuracy for 80% of the estimation attempts for that UE,
assuming several estimates are made [27]. In Rel-17, the target
accuracy for the same service is set to below one meter for 90%
of the estimation attempts in both settings (indoor and outdoor).
For the industrial IoT use case, the requirement is stricter; the

target accuracy is set to less than 20 centimeters for 90% of
the estimation attempts. Vertical positioning requirements are
more relaxed than horizontal ones in most use cases [28].

In Rel-18, 3GPP defines a set of requirements for more
use cases in different positioning scenarios. For instance, the
target accuracy for horizontal RedCap service positioning is
set to below three meters for 90% of the estimation attempts in
both settings (indoor and outdoor). This relaxation is primarily
due to the smaller available bandwidth for RedCap UEs.
Indeed, localizing a device with limited capabilities in different
environmental settings is challenging due to multiple factors,
including the low bandwidth and power-saving mode of the
device. Rel-18 also sets the requirements of sidelink positioning,
which utilizes other UEs to estimate a UE’s location, these
requirements include vehicles, public safety, commercial, and
Industrial IoT use cases with specific accuracy and latency
thresholds for each use case [29].

Latency is another performance metric that indicates if a
positioning method can calculate the location in real-time or
not. End-to-end latency requirements for 5G positioning have
evolved with the new releases as well, from less than one
second in Rel-16 [27] to less than 100 milliseconds in Rel-17.
To further decrease latency, several enhancements have been
proposed, including (i) reducing the number of samples for each
measurement, (ii) triggering measurement via low-layer signals
to save some processing time, (iii) conducting measurement
when there is no data transmission, and (iv) transmitting the
PRS/SRS signals when the UE is inactive [28].

In Rel-18, the latency requirement for RedCap/Sidelink is
not defined yet. Nevertheless, two new requirements are defined
for sidelink positioning; relative speed (the speed of a moving
UE with respect to another UE) and angle accuracy (the error
of the direction measure in degrees) [29].

A metric that is rarely discussed and evaluated is the
maximum number of UEs that can be accurately positioned
simultaneously within a cell. Despite its significance, this topic
remains relatively under-explored in existing literature. We
briefly discuss it in Section VI.

In summary, a given 5G service does not adhere to specific
positioning requirements. These requirements are tailored to
specific use cases, and a given 5G service may serve multiple
use cases.

C. Physical-Layer Measurements for Positioning

One fundamental component of positioning algorithms is the
collection of physical-layer measurements from the transmitted
or received signal, a process that can be carried out by the
User Equipment (UE), the gNB (gNodeB), or both entities.
The following are some key measurements [30] required for
the 5G positioning methods which will be discussed in the
following subsection.

• Reference Signal Time Difference (RSTD), is a UE
measurement that refers to the difference in timing
between the start of a DL-PRS subframe received by
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a UE from gNB1 and the start of the closest subframe
received from gNB2.

• Relative Time of Arrival (RToA), is a gNB measurement
that refers to the beginning of a received UL-SRS subframe
relative to the broadcast signal reference time. Where all
gNBs transmit a broadcast signal simultaneously over the
same frequency channel to synchronize the UE to the
network.

• Reference Signal Received Power (RSRP), measures the
average received power of a reference signal, to identify
the main received beam index which is used to estimate
the change in angle compared to a reference direction.
This can apply to DL and UL signals such as CSI-RS,
PRS, SRS, and Synchronization Signal (SS).

• Angle of Arrival (AoA), is a gNB measurement that
estimates the azimuth and elevation angles of a UE with
respect to a reference direction.

• gNB Rx-Tx Time Difference measures the difference in
time between the received (Rx) uplink subframe containing
SRS associated with UE, and the transmit (Tx) downlink
subframe that is closest in time to the subframe received
from the UE. The case is the opposite for UE Rx-
Tx Time Difference, where the PRS is involved. These
measurements define the round-trip time which can be
used to estimate the distance between a gNB and a
UE. MC-RTT positioning method uses multiple gNB to
increase the accuracy.

• Timing Advance (TA), is a gNB measurement that
indicates the time required by the UE to advance its
transmission so that gNB can transmit and receive the
subframes at the same time. This measurement is bene-
ficial to estimate the distance between the UE and the
gNB.

D. Conventional Positioning Techniques

In the following section, we present a summary of the con-
ventional techniques used for positioning in wireless networks.
They are typically classified into the following categories:
(i) Range-based, (ii) Direction-based, and (iii) Fingerprinting-
based [12], [31]. Note that, unlike the first two categories,
fingerprint-based methods are not standardized in 3GPP. These
distinct methods depend on the aforementioned physical layer
measurements.

1) Range-based techniques: Estimate positions based on
time measurements between transmitters and a receiver or vice
versa. The most common range-based techniques are:

• Time Difference of Arrival (TDoA): It is a technique
used to estimate the location of a UE based on the time
difference at which signals travel between the UE and
multiple gNBs, using trilateration or multilateration [8].
According to the traffic direction, we distinguish two types
of TDoA [12]:

– UL-TDoA, where the serving and neighboring gNBs
measure the time difference of the received UL-SRS,
and the resulting RToA measurements are used to
estimate the location of the UE by the LMF.

– DL-TDoA, where the UE measures the RSTD of DL-
PRS from multiple gNBs and computes its location.

• Multi-Cell Round-Trip Time (MC-RTT): This technique
involves sending signals from the UE to multiple gNBs
and measuring the round-trip time for each of these
signals. By estimating the RTT for each gNB, the distance
between the UE and the gNBs can be calculated. MC-
RTT, like other ranging-based techniques (e.g., DL-TDoA),
uses a trilateration/multilateration estimation algorithm to
calculate the UE’s position [32]. The accuracy of Rx-Tx
time difference measurements is contingent upon factors
such as gNBs synchronization, carrier frequency, and
unobstructed environment, potentially achieving precision
at the centimeter level.

2) Direction-based techniques: Estimates the angle of the
transmitted or received reference signal with relation to a
reference angle. Beamforming, which is a technique used
to focus the transmitted or received signal in a specific
direction, is not a necessary component for these methods;
nonetheless, it has been shown to enhance the precision of the
measurements. The most common direction-based techniques
are the following [12]:

• Angle of Arrival (AoA): This technique is used to
determine the location of a UE based on the direction from
which a wireless signal is coming. Specifically, the serving
and neighboring gNBs measure the angle of received SRS
based on the beam in which the UE is located. These AoA
measurements are then reported to the LMF for computing
the UE’s position.

• Angle of Departure (AoD): Also called DL-AoD, the UE
measures in this technique the received signal strength of
the DL-PRS and identifies the received beam index, which
is a numerical identifier linked to a specific beam within
a beamforming system, indicating the beam currently in
use for communication with a particular user or device.
With the azimuth information of the gNB provided by the
LMF and knowing the angle difference of the identified
beam index, the UE can compute the angle of departure.

3) Fingerprinting-based techniques: Rely on various mea-
surements collected and employed to predict the position of a
UE. It involves conducting on-site surveys in a specific area
to create a database of signal strength patterns at different
locations. During these surveys, specific signal attributes are
measured at known locations, such as received signal strength,
timing information, device orientation, and floor number (if
indoors). These measurements are collected and stored in the
database as fingerprints. When a UE needs to be localized in
the same area, it measures its signal attributes and compares
them with the fingerprints in the database. The device’s signal
attributes are then related to the closest match in the database,
allowing the system to determine the user’s location based
on the best match. This database, also known as a radio map
or fingerprint database, stores the locations along with their
associated fingerprints [12].
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E. UE Capabilities and their Impact on Positioning

An important distinction among 5G services lies in the
capabilities of the UEs that can use them. As a result, there
are expected variations in positioning performance across
different 5G services. It is worth noting that according to [7],
positioning techniques such as UTDoA, OTDoA, fingerprinting,
and E-CID have already been standardized for 4G and 4G-
Advanced networks. These techniques have laid the groundwork
for positioning capabilities in earlier generations of mobile
networks. However, the advent of 5G has unlocked another
level of options for positioning techniques. Indeed, 5G devices
are known to have enhanced capabilities (compared to 4G
devices), including support for a wider range of frequency
bands, advanced beamforming, and MIMO (Multiple Input
Multiple Output) technologies, and improved processing power.
These advancements enable more precise and reliable localiza-
tion, even in challenging environments such as dense urban
areas or indoors where GPS signals may be limited. These
enhancements have made the requirements for localization
technologies evolve from merely meeting basic accuracy and
reliability standards to supporting real-time and high-precision
positioning for a diverse range of applications.

In this subsection, we examine the positioning performance
of the UEs according to their operations modes (or states),
their bandwidth, and their mobility.

1) UE States: In 5G cellular networks, the UE can be in
three different modes of operation. These states are CON-
NECTED, IDLE, and INACTIVE, and are all part of the RRC
protocol (see Fig. 4) [33].
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Fig. 4. UE Transition States in 5G.

The RRC CONNECTED state is designed for efficient data
transmission, allowing the UE to keep its transmitter and
receiver constantly active. The RRC IDLE state is a power-
saving mode in which the UE does not exchange data and
only monitors the paging and broadcast channel to maintain
connectivity. When there are no active data transmissions, the
UE enters the idle state to conserve battery. To check for
new data, the network sends a paging message to the UE.
The UE uses Discontinuous Reception (DRX) to periodically
wake up and monitor downlink signals. RRC INACTIVE state
is designed to reduce network signaling load as well as the

latency associated with transitioning to RRC CONNECTED
state. Furthermore, the UE in the RRC INACTIVE state is
allowed to behave similarly to the RRC IDLE state to save
power.

Regarding positioning, 3GPP states that some physical-
layer measurements can be carried out when the UE is
INACTIVE [30]. On the other hand, other measurements
can only be conducted when the UE is CONNECTED. This
information is important for determining the most suitable
positioning method for a certain 5G service. This capability
allows for measurements to be taken regardless of the UE’s state.
In situations where there is no motion, the last known location
of the UE should still be accessible. Ultra-low-complexity UEs
(i.e., Ambient IoT) are not always connected to the network.
Therefore, NR functionality based on the existing RRC states
may not be valid and it may need new device state definitions
[23].

2) UE Bandwidth: Low bandwidth capability is not a major
issue in UE-based positioning (i.e., downlink PRS), as 3GPP
introduced Narrowband PRS (NPRS) for NB-IoT with only
180 kHz bandwidth. However, for network-based positioning
(i.e., location is computed on the network side), low bandwidth
can significantly affect the positioning accuracy. For example,
the UL-TDoA technique requires that the UE transmits UL-
SRS with a certain bandwidth to achieve the desired accuracy.
It was observed that at least 10 MHz bandwidth for SRS is
required to have fair accuracy [34]. While eMBB/URLLC UEs
can transmit on the maximum bandwidth (i.e., 100 MHz in
FR1), RedCap and mMTC UEs can transmit on up to 20
MHz and 5 MHz, respectively. As a result, the frequency
hopping technique can be used to transmit the reference signal
over multiple time slots to overcome the limited channel
bandwidth and consequently achieve better accuracy. The idea
behind frequency hopping is to continuously switch subcarrier
frequencies during the radio transmission in a specific pattern.
The main goal of this technique is to minimize the chances of
unauthorized interception or jamming of telecommunications. It
was evaluated through simulation by industry partners of 3GPP,
who found that transmitting 100 MHz SRS from a RedCap
UE over 5 hops can achieve similar accuracy to transmitting
100 MHz SRS without frequency hopping [29].

3) UE Mobility: Mobile networks rely on mobility support
to ensure seamless communication for a UE as it moves across
different cell coverage areas. When a UE transitions from
one cell to another, a handover process is initiated to switch
the serving cell. Currently, this handover decision is based
on layer 3 (L3) measurements and radio resource control
(RRC) signaling [24]. However, to address latency, overhead,
and interruption challenges associated with L3-based mobility
management, 3GPP Rel-18 introduces mechanisms and pro-
cedures for layer 1/layer 2 inter-cell mobility. Additionally,
Rel-18 aims to enhance conditional handover support, where
the UE receives a handover command but defers its application
until specific conditions are met. Moreover, inter-frequency
mobility is supported [35]. This approach promises improved
mobility robustness and service continuity in evolving mobile
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networks. Still, and to the best of our knowledge, only a
few works in the literature focus on the use of localization
for handover management. In [36], a wireless testbed is
introduced for evaluating ultra-dense networks and related
mobility schemes. A mobility management scheme is provided
in the testbed to track UE location proactively, enabling
uninterrupted handover (HO) service. UE positions are tracked
using SRSs transmitted by the UE, reducing signaling expenses
for HO but increasing computational complexity. In [37], the
authors propose a deep learning model for user localization and
proactive HO management as well. The model utilizes received
signal measurements to minimize unnecessary HOs and predict
user location while maintaining network throughput.

When a UE is not actively communicating and is in motion,
real-time positioning and precise accuracy are challenging. The
3GPP has established a specific procedure for selecting a new
cell while in the RRC INACTIVE state [38]. The UE will
perform cell re-selection to access the cell that has the strongest
radio signal quality. The network provides the UE with a
whitelist of neighboring cells that should be considered during
signal measurements for potential cell re-selection. Additionally,
the network uses various parameters, such as priorities, signal
quality thresholds, and UE capabilities, to assist the UE in the
cell re-selection process.

For network-based positioning, calculating the location after
each measurement can result in extra noise. However, if
calculations are done after a group of measurements, then
selecting the most repetitive values for these measurements
can reduce the error. The accuracy here improves at the cost
of real-time updates. This approach is suitable for various
scenarios like asset tracking, where you can achieve reasonable
accuracy and nearly real-time updates (e.g., every 5 minutes).

IV. EMERGING POSITIONING TECHNIQUES IN 5G

In this section, we review the state of the art of the emerging
5G positioning techniques (i.e., the techniques which have not
been standardized in 3GPP yet), to improve accuracy and
latency, which are: (i) Sidelink positioning, (ii) Carrier Phase
positioning, (iii) RIS-aided positioning, (iv) Machine Learning-
aided positioning and (iv) Hybrid positioning.

Before delving into the state-of-the-art, we provide a macro-
level comparison of these emerging techniques in terms of
complexity, accuracy, robustness, cost, and signal direction.
This comparison is shown in Table II.

A. Sidelink Positioning

Sidelink communications refer to the direct exchange of
data between two or more UEs, without the need for relaying
through a centralized base station (BS). Unlike traditional po-
sitioning systems, sidelink positioning leverages direct Device-
to-Device (D2D) communication within the 5G ecosystem,
enabling UEs to exchange location-related information. This
enables precise and real-time positioning even with dynamic
and intricate mobility patterns. To the best of our knowledge, no
comprehensive survey in the literature reviews the techniques
for sidelink positioning in 5G. We aim to bridge this gap by

providing a thorough analysis and overview of the state-of-the-
art of these works, presented in the following:

This paper [39] provides an overview of the evolution of
sidelink communications in 5G and its positioning application.

According to [40], uncertainties in anchor positions can
compromise positioning accuracy in industrial environments.
They propose a joint estimation of vehicle and anchor positions
using location-related measurements (LRMs) such as RSS and
ToA. Devices function as anchor-agents, and vehicles are target-
agents. The anchor-agents use sidelink measurements from
target-agents to estimate LRMs, which are then used with a
Kalman filter-based method to estimate the positions of both
anchor- and target-agents. Simulations indicate that utilizing
LRMs collectively, combining time- and angle-domain LRMs,
yields enhanced performance in both 2D and vertical planes.

The study in [41] put forth a novel approach to positioning
utilizing NR-sidelink and the recently introduced Multiple
Quality-of-Service (QoS) class within the 5G framework. This
method involves the clustering of users, where NR-sidelink
is harnessed for ranging users within each cluster, effectively
mitigating overhead. The method is validated through an exten-
sive mobility model, specifically tailored for a stadium entry
use case. User clusters are derived from individual mobility
patterns. Simulation-based analyses are conducted, revealing
substantial signaling overhead reduction, approximately 75%,
across a wide range of SINR conditions. The NR sidelink-based
ranging attains 1.5-meter accuracy, and the Multiple QoS class
implementation leads to notable latency reductions ranging
from 30% to 45%.

It is worth noting that sidelink communications and position-
ing are distinct processes that employ different mechanisms.
Specifically, the wide-band Sidelink PRS (SL-PRS), which
demands the maximum number of physical resource blocks,
and which is used for positioning, could conflict with NR
sidelink transmissions occurring within the same resource
pool or sidelink carrier. The study in [42] addresses this
to allow efficient scheduling between communication and
positioning. They introduce a scheme aiming at selectively
bypassing the preemption mechanism typically applied to
sidelink communications. Their proposed approach involves
a UE that sends a wideband Sidelink Positioning Reference
Signal (SL-PRS). This UE also transmits a ”skip-preemption”
message to another UE detected to utilize the same time and
frequency resources for sidelink communication. Consequently,
both UEs synchronize their transmissions within the same
slot and subchannel. However, this synchronization introduces
significant challenges related and security, as malicious entities
could spoof the ”skip-preemption” messages, causing UEs to
incorrectly synchronize their transmissions.

In summary, recent developments in 5G sidelink positioning
strategies emphasize collaborative and innovative approaches
to overcome challenges in accuracy and efficiency. These
advancements include joint estimation techniques that integrate
different aspects, including multiple QoS classes, to accommo-
date varying accuracy requirements to enable tailored solutions
for different scenarios, and efficient scheduling mechanisms to
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TABLE II
MACRO-LEVEL COMPARISON OF EMERGING 5G POSITIONING TECHNIQUES

Technique / Criteria Complexity Accuracy Robustness Cost Signal
Direction

RIS-Assisted Computing: High cm-level Moderate, depends on a few
key challenges, such as
accurate CSI estimation,
multipath interference, and
environmental sensitivity.

High,
deployment and
maintenance

Mostly DL

ML-Assisted Algorithmic: High cm-level to
meter-level

High, assuming enough
accurate data

Moderate DL / UL

Sidelink Moderate, depends on
devices

meter-level Moderate Moderate SL

Carrier Phase High algorithmic
complexity

cm-level High in LOS, low in NLOS Moderate Mostly DL

MIMO / Beamforming High, real-time processing
required

cm-level High High DL / UL

Hybrid Moderate to High, depends
on the technique

cm-level to
meter-level

High Moderate to
High

DL / UL

address distinct resource demands.

B. Carrier Phase Positioning

Carrier phase positioning, widely utilized in GNSS systems
for its high accuracy, is now being explored for use in 5G
NR systems. This technique involves multiplying a received
reference signal with a replica signal generated at the receiver,
calculating distance based on the phase difference between
these signals [43]. Carrier phase positioning can utilize various
5G reference signals, such as the Demodulation Reference
Signal (DMRS) [44] and PRS [45]–[47], to improve positioning
accuracy.

A key challenge in carrier phase positioning is resolving the
integer ambiguity parameter, which represents the total number
of complete phase cycles that the reference carrier signal must
travel between the UE and the gNB to generate the same
observed phase at the UE. The study in [48] utilized the phase
difference of arrival (PDoA) and OFDM subcarriers to handle
the integer ambiguity of carrier phase, while [45] propose
a technique for clock offset determination through carrier-
phase measurements to achieve precise clock synchronization
among base stations. The authors employ a fusion approach
that combines UE positions estimated using Time Difference
of Arrival (TDoA) and temporal variations of carrier phase
measurements to provide interim position estimates, aiding in
linearizing measurements and resolving integer ambiguities, and
accordingly achieving centimeter-level accurate UE positioning.
The study in [46] introduces the double-difference carrier phase
measurements method to address the integer ambiguity issue
by continuously transmitting PRS from two gNBs to accurately
track carrier phase and prevent ambiguity problems in LOS
environments. Additionally, they employ another UE to observe
the same signals and eliminate measurement errors caused
by clock offset between the two gNBs, achieving sub-meter
accuracy. Further research is needed to explore the robustness
of these methods in noisy or multipath conditions, evaluate

trade-offs between different information sources, and assess
computational complexities associated with the fusion process.

In their work, the authors of [47] introduce a technique for
multi-frequency carrier phase ranging that addresses the issue
of Antenna Reference Point (ARP) position error in gNBs.
The proposed method achieves a positioning accuracy of 2
centimeters.

The authors of [49] extend carrier phase positioning to UAV
navigation. Their framework allows UAVs to achieve sub-meter
accuracy in multipath-free environments by leveraging “loose”
synchronization between the clocks of serving and neighbor
gNBs. Their work, based on extensive experimental data,
models gNB clock deviations using a stable Auto-Regressive
Moving Average (ARMA) process, reducing both position
estimation error and computational complexity.

Additionally, the authors in [50], propose a method to address
multipath fading challenges in indoor environments. Their two-
step approach combines sequential component cancellation
(SCC) and multiple signal classification (MUSIC) algorithms to
estimate the parameters of multipath components. This method
has shown robust performance in real-world experiments,
enabling accurate relative positioning in indoor environments.

In conclusion, recent research efforts in carrier phase posi-
tioning for 5G NR systems have addressed critical challenges,
particularly the estimation of the unknown integer ambiguity
parameter. Various techniques, such as PDoA calculations,
fusion approaches, and double-difference measurements, have
been proposed to enhance the accuracy and reliability of carrier
phase positioning. These methods enhance the applicability of
the widely used carrier phase technique in 5G positioning.
Moreover, the exploration of multi-frequency ranging and
applications in UAV navigation further expands the possibilities
of leveraging carrier phase measurements for high-precision
positioning in 5G networks.
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C. RIS-Aided Positioning

Reconfigurable Intelligent Surfaces (RIS) are engineered
materials that can be reconfigured dynamically to improve
coverage by controlling scattering, absorption, reflection, and
diffraction properties. This control over propagation channels
allows innovative radio positioning solutions, even in severe
LOS obstruction scenarios. [15] provides a valuable review of
recent works using RIS to improve positioning. We complete
it with the following recent works:

In [51], Popoola et al. introduce a novel positioning model
for Airborne Networks (i.e., where UAVs are used as aerial
mobile base stations), leveraging RIS. The system includes an
RIS, a 5G small cell, and a ToA/RSS positioning algorithm.
According to the authors, one of the key open challenges for
RIS-based positioning is pilot contamination, arising from the
use of pilot symbols for the identification of individual RISs.
They argue that it can impact the accuracy and reliability of
positioning in RIS-based systems, and mitigating this issue is
crucial to achieving precise positioning.

In their study, Liu et al. [52] consider positioning in 5G
networks by leveraging multiple passive RISs. The proposed
method involves estimating the UE position by considering
all plausible positions in conjunction with various choices of
RISs. For each combination, the UE position is estimated based
on the measured TDoA, and the resulting position with the
Least Squares Error (LSE) is selected as the final estimation.
The method is tested through simulation, and the results show
that the method effectively estimates the UE position, also
quantifying the estimation uncertainty through the LSE error
metric.

Zhang et al. [53] propose to use an RSS fingerprinting-
based method for positioning in a RIS-assisted environment,
to address the impact of noise on RSS measurements, par-
ticularly in indoor settings. They gather multiple RSS values
under different configurations and use an optimization method
based on Cramér-Rao Lower Bound (CRLB) to find the RIS
configurations that yield the most accurate positioning. Note
that CRLB is used to assess the accuracy of a given parameter
estimation. These RSS values are used as fingerprints to train
neural networks, enabling the estimation of target locations
based on these fingerprints. Simulations show that the method
can achieve positioning in an NLOS scenario with an accuracy
of 0.5 meters.

Lu et al. [54] argue that the assumption of perfect knowledge
of the RIS’s location and orientation may not be valid in
practical scenarios due to factors like deployment faults,
external disturbances, or improper installation. Thus, they
propose a Joint RIS Calibration and User Positioning method,
JrCUP, where they use Fisher Information to derive analytical
lower bounds for both user and RIS states and propose an
iterative algorithm to estimate these parameters based on AoA
and AoD measurements. Simulations show that multi-user
scenarios generally outperform single-user cases due to the
additional information obtained from a greater number of
measurements, enhancing the accuracy of the RIS state.

Wang et al. [55] introduce the concept of Continuous Intelli-

gent Surfaces (CISs), a specific type of RIS, which are planar
structures that can be electronically controlled to manipulate
electromagnetic waves. Unlike conventional RISs with discrete
elements, CISs exhibit a continuous phase response function
across the entire surface, enabling precise reflection, refraction,
or scattering of incident waves. Fisher’s information analysis
demonstrated that strategically configured CISs can significantly
enhance positioning accuracy, with carefully designed phase
responses providing substantial improvements in positioning
performance compared to random phase responses or a simple
scattering plane.

Unlike most existing works on RIS positioning that rely
on simulations, the authors in [56] present a demo of a real-
world deployment using RIS equipment for indoor localization
of UEs. They also introduce a novel weighting scheme for
RSS fingerprints collected from various environments. The
process involves two phases: a meta-learning phase, where a
generalized Convolutional Neural Network (CNN) meta-model
is built using data collected at different times, and an online
learning phase, where the meta-model is fine-tuned using only
20% of the data from a new environment. However, it’s worth
noting that this approach has been used with Wi-Fi connectivity
at 5.5 GHz. It would thus be interesting to see how it generalizes
to 5G.

To summarize, recent advancements in 5G positioning strate-
gies involving RIS technologies have showcased innovative
methods. These include the utilization of multiple passive
RISs for TDoA-based positioning, RSS fingerprinting in RIS-
assisted environments, joint RIS calibration and user positioning
techniques, the application of CISs, etc. Moreover, studies
highlight the potential of RISs in diverse scenarios, including
airborne networks, demonstrating the versatility of RIS-assisted
positioning in 5G networks. However, integrating RIS into
existing 5G infrastructure poses challenges due to the need for
installation and the high cost of maintenance.

D. Machine Learning-Aided Positioning

Machine Learning (ML) is transforming 5G positioning,
particularly in complex scenarios like NLOS multipath. By
creating signal fingerprints, leveraging crowdsourced data, and
predicting device locations based on historical patterns, ML can
significantly enhance location accuracy. Mogyorosi et al. [12]
provides a comprehensive review of ML-based positioning
methods. Building upon this, we present recent advancements
in the field.

Zhao et al. [57] address the challenge of assessing the
uncertainty in positioning methods. They introduce the use
of Gaussian processes (Bayesian optimization) and Random
Forests (Classification methods) for both the estimation of UE
positions and the quantification of uncertainty. The models
are trained using ToA measurements of PRS from multiple
BSs. Their results demonstrate that their proposed methods
achieve satisfactory positioning accuracy and lead to a predicted
uncertainty that is highly correlated with the actual positioning
error.
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In a similar vein, Albanese et al. [58] introduce the concept of
”pseudo-multilateration,” which involves a single UAV anchor
obtaining distance measurements over time while following a
specific motion trajectory. These distance measurements then
undergo a processing phase, which results in the determination
of the target trajectory within the considered time frame.
The paper emphasizes the flexibility of UAVs in providing
connectivity even in challenging conditions. However, it also
acknowledges the high deployment complexity associated with
UAVs, which can be mitigated by the usage of RISs to
complement existing ground networks. Finally, the authors
advocate the use of CNN for determining the UE position by
treating the collected measurements as a single-channel image.
This approach enables CNN to effectively handle the channel
shadowing caused by obstacles in the scenario. However, to
the best of our knowledge, no actual implementation has been
proposed in the paper.

Ruan et al. [59] introduce iPos, an indoor positioning
system that leverages fingerprinting and incorporates both
supervised and unsupervised learning techniques. The system
starts with preprocessing channel state information (CSI) and
an unsupervised autoencoder extracts critical CSI features.
The Gaussian Radial Basis Function (RBF) kernel is used
to quantify the similarity between input and reconstructed
features. An amplitude-phase probability fusion function is used
to deliver positioning estimations. The method’s performance
is evaluated in both an office and a corridor environment,
yielding average indoor positioning errors of 2.14 m and
2.81 m, respectively. Since the system does not need complex
convolutional operations it is particularly suitable for future
deployment of UEs with limited computing power and storage
capacity.

Torsoli et al. [60] introduce the concept of Blockage
Intelligence (BI), which consists of a probabilistic description
of wireless propagation conditions, especially in case of NLOS
to reduce the biases in measurements estimates (e.g., ToA).
They process the cross-correlation between the transmitted and
the received reference signals (PRS/SRS). Then, a two-class
supervised classification problem is considered, representing
either NLOS or LOS propagation conditions, and the vector
of the statistical features is used as input. An exponential
loss function is employed to obtain a classification model,
which can be used to get a probabilistic characterization of
NLOS propagation conditions. They show how BI can enhance
location awareness using simulation in 3GPP indoor factory
scenarios for different ranging methods, including ToA, RTT,
and AoD. They also use in [61] a similar modeling approach by
introducing a machine learning-based reference BS selection
method. To do so, they propose a method utilizing the AdaBoost
algorithm for classification. Based on signal statistical features,
the model is trained to predict both the channel quality and the
LOS posterior probability. Subsequently, the BS with the best
channel quality is selected as the Reference Base Station (RBS),
which is used to compute the TDoA by subtracting the ToA of
that RBS from the ToA of all other BSs involved in localization.
Simulation results show improvement in positioning accuracy
when utilizing TDoA measurements compared to the common

methods using the SNR to select the RBS.

Liu et al. [62] propose a ToA estimation method based on
5G downlink signals. The method leverages ML algorithms
combined with a Kalman Filter (KF) to achieve high-precision
and stable signal tracking, all within a Software Defined
Receiver (SDR) framework, without requiring any changes
to the existing hardware structure. The method is tested using
real field deployment, and the results indicate that the 95%
Cumulative Distribution Function (CDF) of the measurement
error using commercial 5G signals in the indoor environment is
0.50 m. Furthermore, the results also show that the ML-based
tracking method can achieve equal or even higher accuracy
compared to traditional carrier phase-ranging tracking methods.

To conclude, the incorporation of ML models within 5G
networks holds significant promise for addressing positioning
challenges, especially in scenarios characterized by NLOS
paths. The presented studies showed that ML techniques
can contribute to strongly improving location accuracy by
employing methods such as signal fingerprinting, crowdsourced
data utilization, and historical pattern-based predictions. Still,
the use of ML for 5G positioning faces a major challenge
which is dataset availability. Indeed, comprehensive datasets
representative of diverse 5G environments are needed for
accurate model training, requiring significant resources for
collection.

E. Massive MIMO & Beamforming Positioning

Massive MIMO [63] and beamforming have emerged as
essential technologies for next-generation wireless networks.
Massive MIMO utilizes large arrays of antennas at the base
station to communicate with multiple users simultaneously,
significantly improving spectral and energy efficiency. Beam-
forming, on the other hand, enables directional focusing of
radio frequency signals, enhancing targeted communication
and reception. These technologies offer opportunities to refine
position estimation accuracy in complex environments by
directing focused beams toward devices. Alamu et al. [64] offers
a valuable overview of positioning with massive MIMO, though
recent developments require an updated review, especially
for beamforming positioning in 5G networks. We provide
in what follows an overview of key recent advancements in
both massive MIMO and beamforming positioning.

Sellami et al. [65] [66] use a neighbor-assisted algorithm to
estimate distances between the UE and its two closest Anchor
UEs through reference signal power measurements, and resolve
ambiguity using beamforming over limited angular intervals.
Their results consistently achieve sub-meter accuracy, even in
challenging environmental conditions (low SNR).

The study of Singh et al. [67] estimates the ToA from
multiple BSs through the application of the Estimation of Signal
Parameters via Rotational Invariant Technique (ESPRIT) [68],
achieving a 20 cm positioning accuracy for 90% of UEs in
indoor factory scenarios.

Gante et al. [69] investigate the capabilities of low-power 5G
positioning systems using machine learning in millimeter wave
(mmWave), considering energy consumption and estimation
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errors. The proposed method exhibits notable energy efficiency
gains and reduced estimation errors. Particularly effective in
NLOS scenarios, it surpasses existing approaches in both
accuracy and energy efficiency. Evaluation results reveal that
the method achieves remarkable energy efficiency, requiring
as little as 0.4 mJ per position fix. This translates to energy
efficiency gains of 47× and 85× for continuous and sporadic
position fixes, respectively, compared to the latest assisted-GPS
implementations.

Fascista et al. [70] employed AoD in a mmWave indoor mas-
sive multiple-input single-output (MISO) scenario. The study
suggests that well-designed transmit beamforming enhances
position estimation accuracy in DL compared to UL, assuming
realistic power conditions. The proposed two-step algorithm
incorporates adaptive beamforming to achieve highly accurate
positioning, even in the presence of multiple users.

Abu et al. [71] address the challenge of communication
systems lacking synchronization for effective positioning. The
paper focuses on two-way positioning protocols, namely
the round-trip positioning protocol (RLP) and collaborative
positioning protocol (CLP). It delves into single-anchor posi-
tioning, deriving the Cramer-Rao bound (CRB) for position
and orientation from a single transmitter. The proposed method
for mmWave wireless networks utilizes time delay and angle
information, employing beamforming for both UL and DL
performance evaluation. The results show that it is more
beneficial to have more antennas at the BS than at the UE,
which can help minimize interference by directing signals more
precisely to a specific UE.

Seo et al. [72] use beam sweeping, which is a technique
involving the identification of the strongest beam directed
toward the UE through the measurement of Reference Signal
Received Power (RSRP). The latter helps in estimating the
angle between the serving gNB and the UE. By refining the
estimated UE position based on beam direction, their method
distinguishes closely located UEs and improves positioning
accuracy as the beam width narrows, benefiting massive MIMO
systems.

Koivisto et al. [73] propose a direction-of-arrival (DoA) and
ToA estimation method using analog radio frequency (RF)
beamforming-based observations, enhanced by an extended
Kalman filter. Their CRLB-based analysis shows less than two
meters of positioning accuracy with minimal computational
overhead, making it a promising solution for RF multi-beam
systems.

Wang et al. [74]explore deep convolutional Gaussian pro-
cesses (DCGP) for outdoor mmWave positioning, using a
large dataset of beamforming images. Their approach improves
positioning accuracy while estimating uncertainty, highlighting
the potential of DCGP in mmWave environments.

Pucci et al. [75] examine the sensing capabilities of 5G NR
under the Joint Sensing and Communication (JSC) paradigm,
Their results reveal the ability to detect tens of targets with
submeter-level accuracy, confirming the viability of integrating
sensing functionalities into communication systems through
multi-beam designs.

Hu et al. [76] present a wideband SRS-based AoA estimation
method for 5G, combining a Multiple signal classification
(MUSIC) [77]-like algorithm with a novel focusing technique
for high accuracy positioning with reduced computational
complexity. Their method improves estimation accuracy by up
to 30%, outperforming traditional narrow-band and wideband
methods.

Chu et al. [78] propose a hybrid analog and digital beam-
forming (HBF) method for positioning enhancement in cellular
MIMO systems. Resource allocation across power, beam, and
frequency dimensions, improves positioning performance and
robustness against multipath clutters.

In summary, recent advancements in Massive MIMO and
beamforming have demonstrated their potential to significantly
enhance positioning accuracy in 5G networks, even in ob-
structed environments with low SNR. These technologies
leverage advanced methods such as ESPRIT, beam sweeping,
and deep learning to refine position estimation. However, chal-
lenges remain regarding the complexity of deploying extensive
antenna arrays, maintaining synchronization, and managing
the high computational demands for real-time beamforming
optimization.

F. Joint and Hybrid Positioning Techniques

The combination of signals from different technologies for
positioning has garnered significant interest within the research
community. By integrating multiple techniques, positioning
accuracy can be greatly enhanced. This subsection reviews
recent developments in joint positioning techniques within
5G and hybrid techniques that incorporate 5G with other
technologies, such as GNSS, Bluetooth, and more.

In their study, Zhang et al. [79] use carrier phase with ToA
to address the challenge in carrier phase positioning techniques
such as continuous phase tracking, accurate integer ambiguity
resolution, and positioning error caused by NLOS. They
propose a two-step position estimator based on Bayesian theory,
i.e. Maximum Likelihood Estimation (MLE) and Maximum A
Posteriori (MAP) estimation, besides NLOS identification and
suppression scheme to further enhance the accuracy.

Liang et al. [80] propose a hybrid method to improve
accuracy in indoor positioning by integrating 5G, Bluetooth
Low Energy (BLE), and a terminal motion sensor. Their
approach combines UL-TDoA from 5G, AoA from BLE, and
sensor data using an optimization algorithm. This method
achieves centimeter-level accuracy for distances of 3 meters
and maintains less than 3 meters of error for longer distances.

In their work, Alghisi et al. [81] tackle the limited satellite
visibility for GNSS positioning in urban areas by combining 5G
technology with GNSS. Using ToA and TDoA with multiple
5G base stations, their findings reveal that 5 base stations are
optimal for aiding GNSS positioning. Both ToA and TDoA
yielded similar performance, with TDoA showing a slight
advantage, particularly in challenging urban scenarios.

To address the challenges of unstable multi-signal estimation
in GNSS-5G hybrid networks, Liu et al. [82] introduce the
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Square Root Unscented Stable Filter (SRUSF) for joint posi-
tioning in GNSS and 5G. Their method stabilizes positioning
accuracy by maintaining positive covariance in estimation
errors and reducing the risk of divergence in hybrid networks.
Simulation results show that SRUSF outperforms five other
joint techniques, providing improved accuracy and reliability.
This advancement paved the way for mass-user terminals
to deliver more reliable positioning services in GNSS-5G
environments.

Li et al. [83] tackle the issue of 5G clock synchronization
error in hybrid GNSS/5G systems. Their method introduces
double-differenced observations to mitigate the impact of clock
errors, improving accuracy between terminals and base stations,
as well as between base stations themselves. The study also
examines the dynamic positioning performance of various
combined positioning models in different obstructed environ-
ments by integrating 5G double-differenced observations with
undifferenced/double-differenced GNSS observations and com-
paring the results with GNSS-only positioning. The findings
indicate that the combined positioning model outperformed a
single system in different positioning modes, particularly in
obstructed environments.

Finally, Liu et al. focus in [84] on improving smartphone
positioning accuracy by proposing a GNSS/5G hybrid posi-
tioning model, particularly for challenging urban environments
where building interference diminishes the reliability of GNSS
signals. They introduce a 5G observation model based on unit
vectors, which addresses the shortcomings of the traditional
angle of departure (AOD) method by reducing linearization
errors. The unit vector model minimizes the nonlinearity of
the observation process, leading to substantial gains in the 5G
system’s performance, especially in the presence of increased
noise. Furthermore, the study highlights the importance of
BS height and geometric distribution in positioning accuracy.
The method offers a robust solution for seamless indoor and
outdoor positioning, achieving decimeter-level precision even
in occluded areas.

In summary, hybrid and joint techniques offer significant
advantages in improving positioning accuracy and handling
complex environments, such as indoors. However, these im-
provements may come at the cost of real-time updates, due to
the time taken for the data fusion from different sources [85].
Nevertheless, there are certain use cases (such as asset tracking)
where this trade-off is acceptable.

V. EMERGING POSITIONING USE CASES

Positioning is not only a critical enabler in the 5G landscape
but also an integral part of our daily lives, shaping how we
interact with technology and our environment. From navigating
cities to ensuring the efficient delivery of goods, accurate
and real-time positioning enhances convenience, safety, and
productivity. In everyday scenarios like commuting through
dense urban areas, precise location data allows for better
navigation and smarter traffic systems, reducing delays and
improving public safety. Beyond logistics and transportation,

positioning plays a vital role in emergencies, where the ability
to quickly and accurately locate individuals can save lives.

As 5G technology continues to advance, it brings forth a
multitude of emerging use cases that extend beyond traditional
communication capabilities, and that come along with addi-
tional complexities and challenges, especially for positioning.
Two notable positioning extensions that are gaining momentum
are velocity tracking and 3D positioning. We provide the
following description of the two extensions and the related use
cases and review the existing works that address these two
extensions or the related use cases in the literature.

1) Velocity Tracking: Accurately localizing fast-moving
vehicles, such as high-speed trains (HSTs) or fleets of vehicles,
presents significant challenges. High mobility introduces com-
plexities like Doppler shifts, rapidly changing propagation
conditions, and the need for extremely low-latency posi-
tion updates. Traditional positioning systems often struggle
with precision in these dynamic environments, yet interest
in addressing these challenges has surged in recent years.
Technologies like Massive MIMO and beamforming offer
potential solutions by improving propagation conditions and
positioning accuracy, which is essential for channel estimation
and enhancing wireless access in railway communications [86].
The following section reviews recent works addressing fast-
moving vehicle positioning using 5G.

Shi et al. [87] present a two-stage location-aware beamform-
ing technique for localizing highs-speed trains (HST). The
first stage involves a deep learning-based positioning method
to determine the positions of train carriages. They train a
neural network to implement the positioning function, on a
large amount of historical data with latitude and longitude
information (paired). The second stage involves a hybrid
precoding system employed for beamforming with a reduced
number of RF chains. However, it is worth noting that according
to the authors, while current GPS positioning accuracy stands
at approximately 5 meters, the designed positioning algorithm
in their work achieves an accuracy of only 8 meters. The
authors argue that there is still an interest in using their method
as an alternative positioning method for HST in complex
environments.

In [86], Shi et al. also consider a positioning problem of HST
in railway wireless networks by utilizing the 5G NR PRS. They
assume that the train runs along the railroad at a fixed velocity,
and receives PRS signals from the BSs deployed on the side of
the railroad. An Iterative Two-phase Weighted Least Squares
(I2WLS) method based on range difference of arrival (RDoA)
measurements is proposed. RDoA measurements determine
the position of the mobile source by detecting the range
difference between the arrival of the signal transmitted by
the two BSs. The I2WLS, which is based on a widely used
algorithm for estimating regression coefficients [88], linearizes
the RDoA equations to pseudo-linear ones and is then utilized
to obtain the train position. The simulation results illustrate
that a centimeter-level accuracy can be achieved for small PRS
intervals, velocities, and base station distances.

In [89], Trivedi et al. present a sensing-based 5G positioning
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method for the positioning and tracking of HST. The proposed
method utilizes the Distributed Compressed Sensing Simulta-
neous Orthogonal Matching Pursuit (DCS-SOMP) algorithm to
extract AoD, AoA, and ToA of the LOS path based on received
signals. The positioning results are integrated with an EKF
for train tracking. The EKF prediction outputs are utilized for
beamforming and outlier detection, enhancing the algorithm’s
performance. The proposed algorithm, implemented and tested
in a 3GPP specified HST scenario [90], achieves sub-meter
positioning accuracy with 4-6 Remote Radio Heads, and an
accuracy of 0.34 meters with 95% availability when using 2
Remote Radio Heads.

Wen et al. [91] introduce an Improved Extended Kalman
Filter (IEKF) algorithm that utilizes the Least Squares of
Undermeasurement (LSU) technique for HST localization.
The IEKF method involves expanding nonlinear functions
through higher-order statistical features, enhancing position-
ing accuracy. Simulation results show that the IEKF, when
expanded to the second order, achieves over 20% performance
improvement compared to traditional algorithms such as EKF
(Extended Kalman Filter). Notably, at the third order, the
IEKF demonstrates over 85% improvement, which reflects
the additional accuracy gained from incorporating even more
detailed statistical information and higher-order terms in the
model. This illustrates the IEKF’s effectiveness in high-speed
train scenarios and its capability to manage high-dimensional
systems with significant nonlinearity.

Besides localizing HSTs, some works focus on localizing
fleets of vehicles. In [92], Liu et al. showcase the application
of cloud-based cooperative positioning for localizing a vehicle
platoon. The objective is to enhance the positioning accuracy of
convoy vehicles by leveraging correlated random features such
as speed and distance. Employing the Gamma-Markov-Group-
Sparse (GMGS) model to capture the stochastic nature of these
correlated features, they introduce a collaborative road profile
estimation method with Gaussian Processes. This method
integrates crowd-sourced local vehicle predictions to refine
onboard estimates through the Kalman Filter. Results show
improved accuracy and resilience in road profile estimation,
compared to GPS and its model uncertainties.

In summary, the presented works address the challenge of
precise positioning in dynamic scenarios, particularly focusing
on HST and vehicle platoons. The proposed methods involve
a range of techniques, including location-aware beamforming,
compressed sensing, and cloud-based cooperative positioning.
In a general way, these approaches aim to overcome limitations
associated with GPS accuracy, environmental complexity, and
stochastic features inherent in high-speed transportation. The
results suggest that the proposed methodologies offer a reliable
positioning in various operational conditions.

2) 3D Positioning: Many critical use cases, such as logistics,
emergency services, and UAV navigation, necessitate accurate
3D positioning. As 5G networks advance, 3D positioning
becomes more achievable through a variety of innovative
approaches. This section reviews recent developments in 3D
positioning techniques within 5G networks.

Lin et al. [93] propose a tensor-based approach for 3D
positioning using a wideband mmWave massive MIMO system.
They introduce a multidimensional interpolation method to
suppress frequency-dependent components in the antenna
array steering vectors, critical for maintaining beamforming
accuracy across the wideband spectrum. By leveraging the
high temporal resolution of mmWave signals, they effectively
decouple parameters across temporal, spatial, and frequency
domains. Their approach computes 3D coordinates by ex-
ploiting the quasi-optical nature of mmWave signals, showing
superior performance over traditional methods like the ESPRIT
algorithm.

Due to the challenge of meeting the Nyquist sampling rate in
5G hardware devices, traditional subspace methods can result
in significant false peaks during parameter estimation, leading
to a sharp decrease in accuracy. To address this issue, Wu
et al. in [94] propose a sparse parameter estimation and 3D
positioning approach using the orthogonal matching pursuit
algorithm. They first create an L-shaped sparse antenna to form
a sparse array manifold. Utilizing 2D AoA and time of flight
(ToF), they establish a 3D parameter estimation model and a
3D positioning method based on the direct path. Subsequently,
they transform the 3D parameter coupling estimation into two
2D parameter coupling estimations. Simulation results show
that the positioning accuracy in all dimensions is within 20
cm.

In their study, Afifi et al. [95] approach the positioning of
UAVs by framing it as an optimization problem. They suggest
that the drone can use RSSI measurements from nearby 5G
base stations to determine its location without direct interaction
with these stations. They address this positioning problem using
an appropriate optimization method to find the best solution.
Additionally, they introduce a deep supervised learning method
to offer a positioning solution with similar accuracy for real-
time dynamic applications.

Nazari et al. [96] explore the 3D positioning and orientation
of an unsynchronized multi-antenna UE using downlink MIMO-
OFDM signals. They apply Fisher information analysis to show
the problem is generally identifiable, as long as there is at
least one multipath component. They formulate a maximum
likelihood estimation problem to estimate the UE’s position and
orientation, along with several nuisance parameters like the UE
clock offset and incidence points. The problem involves high-
dimensional non-convex optimization over Euclidean and non-
Euclidean manifolds. Then, they propose an initial geometric
estimate of all parameters, which reduces the problem to a 1-
dimensional search over a finite interval. Their results illustrate
the effectiveness of this method, which narrows the gap to the
Cramér-Rao bound using the maximum likelihood estimation.

Chel et al. [97] tackle multi-RIS enabled 3D SISO sidelink
positioning, where at least two RISs act as passive anchors
with known positions and orientations. It demonstrates that,
through sidelink communication between two unsynchronized
UEs, their absolute 3D positions and clock offset can be
estimated, even in the absence of base stations (BSs). To
achieve this, a low-complexity channel parameter estimation
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method is developed to estimate delays and spatial frequencies.
Using these estimates, a 3D-search algorithm is proposed to
further refine the 3D positioning and clock offset calculations,
supported by maximum likelihood estimators.

The reviewed studies present a range of innovative solutions
for 3D positioning in 5G networks. They encompass different
approaches such as tensor-based parameter estimation, sparse
antenna design, optimization-based UAV positioning, and
a complex optimization framework for 3D UE positioning.
These diverse methods aim to overcome challenges related
to hardware limitations, false peaks in traditional subspace
methods, and the identification of parameters in complex
non-convex optimization problems. Results show that these
approaches efficiently overcome these challenges, through
improved accuracy and reliability in 3D positioning.

VI. CHALLENGES IN 5G POSITIONING

In this section, we discuss some challenges that need to
be addressed to unlock the full potential of 5G for location-
based services and applications. These challenges lie around
the latency requirements of location-based services, massive
signaling, scalability, and privacy concerns. We provide a
detailed explanation of each challenge below.

A. Real-Time RAN Data Collection and Processing

In commercial RAN nowadays, physical-layer measure-
ments are collected and aggregated every 15 minutes to be
reported/processed for network-based positioning. Two main
types of tracing are used to capture the logs of specific UEs:
(i) Cell trace and (ii) User trace. In cell trace, all UEs within a
cell site are logged for a specific period. However, this type of
tracing has a major drawback. It is challenging to differentiate
the UEs due to a privacy policy that masks certain digits
of the International Mobile Equipment Identity (IMEI). This
makes it nearly impossible to distinguish UEs from the same
manufacturer. Alternatively, an identifier called ”UE-Trace-ID”
can be used, but it is not practical for more than two UEs due
to the large number of ”UE-Trace-ID”s generated for each UE
every few minutes. On the other hand, user traces can capture
data for a single UE across multiple cell sites. However, the
number of UEs that can be traced using this method is limited
due to design and cost constraints. The user trace uses the
International Mobile Subscriber Identifier (IMSI) to distinguish
the UEs.

One suggested approach for achieving real-time network-
based positioning in commercial RAN involves using Mobile
Edge Computing (MEC) [98] to increase the available resources
for user tracing and promptly process the reported measure-
ments. The positioning system can also limit the trace to the
necessary events (i.e., measurements) only, which helps save
storage space and enables simultaneous tracking of more UEs.

B. Scalability and Signaling Capability

The signaling flow of messages for positioning between the
UE and the 5GC currently follows standard signaling protocols
established by 3GPP, namely LTE Positioning Protocol (LPP)

and NR Positioning Protocol A (NRPPa) over NG Control
Interface (NG-C) between 5GC and NG-RAN, and RRC
protocol between the NG-RAN and the UE as illustrated in
Fig. 5. NG-C introduces new capabilities to the conventional
LTE control plane including network slicing. This enables
operators to create dedicated networks for specific applications,
improving performance for critical tasks like self-driving cars
and virtual reality [99].
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Fig. 5. 5G Positioning Signaling Protocols [26].

In the downlink positioning (UE-based) for mMTC service,
Chen et al. [44] employ the DMRS instead of PRS for localizing
a massive number of UEs using the carrier phase technique.
The rationale behind using DMRS is that it is a broadcast
signal that is received by every UE within the gNB’s coverage.

In uplink positioning (network-based), SRS configuration is
flexible so that the gNB can receive signals from multiple UEs
at the same time. The maximum number of UE has not yet
been determined, though, as this could compromise accuracy.
More investigation is required as there may be a trade-off
between accuracy and scalability that has not been examined
in prior studies.

Due to the intended low complexity of mMTC service, the
hardware capabilities are limited. In network-based positioning,
as per 3GPP [26], the UE is required to provide various pieces
of information to the LMF to assist in positioning computation
such as Reference signal received power and quality, UE Rx-
Tx time difference measurement, and LOS/NLOS information.
In the context of low-capability 5G services such as RedCap
or mMTC, two challenges arise: (i) low-complexity devices
may not be capable of transmitting this information, and (ii)
the ability to send such a large amount of information to the
LMF through uplink signaling is uncertain. Consequently, the
standardized signaling for positioning may not be suitable for
mMTC positioning and may require modification.

In 3GPP networks, all the NR UE access mechanisms are
handled by the gNB. For ultra-low-cost UEs (i.e., AIoT),
low-complexity 3GPP network illuminators, readers, and/or
smartphones are needed, requiring more coordination between
network devices to service AIoT UEs which requires a new
network protocol design. In addition, due to their small form
factor and low-cost requirement, AIoT UEs cannot support
full-stack access protocol. Thus, simplified protocol design is a
key requirement for these devices. Moreover, it will be difficult
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to register such UEs with the network through the subscriber
identity module (SIM), which makes it important to establish a
simplified form of AIoT UE identification in a 3GPP network
[23].

C. UE Positioning in Obstructed Environments

UEs in nomadic mobility frequently encounter obstructed
line-of-sight (OLOS), leading to reduced positioning accuracy.
Various methods have been suggested to address this issue.
This section will present both conventional techniques and the
latest advancements in this area.

Range-based positioning methods are more affected by
inaccuracies in distance measurements when the line of sight
from the UE to the BS is obstructed by an object (see Fig.6). As
a result, range-free methods are sometimes employed instead.
One such method involves using Multiscale Radio Transmission
Power (MRTP), which involves incrementally increasing the
level of transmission power and determining the distance based
on the smallest scale of received signals based on empirical
RSS-distance pairs. This method assumes the presence of
multiple gNBs, with at least one being obstructed [100].

UE

Obstructed line-of-sight
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Fig. 6. An Example of Obstructed Line-of-Sight.

Another conventional technique using RSS involves identify-
ing OLOS by using Maximum Likelihood Estimation (MLE) to
estimate a preliminary Path Loss Exponent (PLE) parameter for
all reference nodes (i.e., gNBs). This is followed by calculating
the signal attenuation for each link and determining the average
signal attenuation. The next step involves comparing the
calculated signal attenuation on each link with the average
to determine which link(s) are obstructed. These obstructed
links are then removed, and MLE is reapplied to obtain a more
accurate PLE parameter. This new PLE parameter is used to
repeat the process to get a target location estimation [101].

A recent algorithm has been proposed for accurate sequential
positioning in environments with multiple signal paths. This
algorithm involves using a factor graph formulation and a
particle-based sum-product algorithm (SPA) to capture the
delay and amplitude statistics of the multi-path radio channel.
By doing so, the algorithm can indirectly exploit position-
related information from the multi-path components (MPCs) to
estimate the UE’s position without relying on prior information

like floorplan data or training data. This algorithm is capable
of providing precise position estimates even in obstructed line-
of-sight scenarios [102].

D. Security and Privacy

Security is one of the major challenges that are hurdling the
development of positioning in general. This can be explained
by the numerous threats that it can provoke. According to [103],
two distinct categories of security-related vulnerabilities have
implications for 5G positioning:

1) Security Threats: These vulnerabilities manifest as a
spectrum of concerns such as interference, attacks, and
errors. Threats like Man-in-the-Middle (MiM) attacks
and Distributed Denial-of-Service (DDoS) attacks pose
significant risks. Typically, the accuracy of positioning
assumes critical significance, particularly for applications
that hinge on precise data. Data corruption or manip-
ulation becomes then a tangible threat for these very
applications.

2) Privacy Concerns: Alongside security threats, privacy
is a paramount concern. This dimension unfolds in
multifaceted ways. Unauthorized tracking and sharing of
user locations can be very harmful. Equally crucial is
the concept of the “right to be forgotten”, where users
have the prerogative to erase location data that has been
collected about them. Moreover, the positioning of certain
UEs has the potential to unveil user behavior patterns,
presenting a unique challenge to uphold user privacy and
anonymity. This threat also extends beyond individual
users to industrial settings, where the disclosure of
operational methodologies through the positioning of IoT
devices can have profound implications for companies.

In particular, 5G positioning methods have their own
sets of vulnerabilities. For instance, several ranging/direction
techniques, including NR E-CID, AoA, and AoD, present
vulnerabilities due to radio signal interference. These vul-
nerabilities stem from the potential manipulation of the
ranging process through various types of attacks, including
relay, replay, and amplitude-based attacks. In contrast, TDoA
and MC-RTT techniques offer heightened resilience against
relay attacks. However, these methods are not immune to
distance manipulation vulnerabilities. Challenges such as early
detection, late commitments, and overshadowing can introduce
inaccuracies in distance estimation, compromising the overall
positioning accuracy [104].

In response to these vulnerabilities, several efforts have been
made by the research community. [103] identifies the following
as the most important approaches to enhance the security of
5G positioning:

• Physical Layer Measurements: Employing physical
layer attributes to enhance security by validating device
authenticity and integrity. For instance, [104] propose
V-Range as a secure alternative to PRS/SRS, through
a distance bounding protocol using shortened OFDM
symbols and integrity checks. The receiver layer detects
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the correctness of the data and checks for power level
consistency.

• Trustworthiness Metrics: Metrics that evaluate the
trustworthiness of devices and data sources can aid in
identifying potential threats.

• Cryptography: The deployment of encryption techniques,
digital signatures, and secure communication protocols
can shield against unauthorized access and data tampering.
For example, 3GPP has proposed a Service Enabler
Architecture Layer (SEAL) to enable key management in
5G networks [105].

Amid these efforts, it’s noteworthy that various legal frame-
works have emerged to address these security and privacy
challenges. Legislative measures span diverse jurisdictions and
serve as a crucial step toward instilling confidence in the IoT
positioning landscape.

Interestingly, the role of positioning encompasses security
enhancements. Indeed, it can serve as a safeguard against com-
promised devices, theft, or unauthorized usage. For instance,
it can allow us to know if a device has been altered or stolen,
according to its position evolution. Moreover, positioning
can wield proximity-based authentication, bolstering security
protocols and access controls [6].

VII. CONCLUSION

As the deployment of 5G networks continues to expand
globally, the demand for accurate, scalable, and reliable
positioning solutions is increasingly critical across a broad
spectrum of industries. This paper has reviewed the current
landscape of 5G positioning technologies, focusing on both
conventional and emerging techniques, including sidelink
positioning, Reconfigurable Intelligent Surfaces (RIS), Machine
Learning (ML)-aided positioning, and massive MIMO. Each
of these technologies offers unique advantages, addressing
various challenges faced by previous generations of positioning
systems, such as poor indoor accuracy and high-latency data
processing.

The discussion of use cases, such as industrial IoT, au-
tonomous vehicles, and healthcare, highlights how 5G posi-
tioning capabilities are revolutionizing these fields, enabling
real-time tracking, improved process automation, and enhanced
safety. However, while significant progress has been made,
several challenges remain unresolved. Real-time data collection,
scalability in dense urban environments, and security concerns
surrounding location-based data are critical hurdles that must
be addressed for widespread commercial deployment.

Future research must continue to focus on improving
accuracy in non-line-of-sight (NLOS) scenarios, especially in
urban and indoor environments. Additionally, as 5G-Advanced
and 6G technologies are developed, further exploration of
hybrid positioning methods, which combine multiple signal
types (e.g., GNSS, Bluetooth, and 5G), will be key to enhancing
both accuracy and reliability. The integration of AI and machine
learning holds promise for tackling these challenges, enabling
more adaptive and intelligent positioning solutions that can
respond to the dynamic nature of real-world environments.

In conclusion, while 5G offers transformative potential
for positioning technologies, realizing its full capabilities
will require continued innovation and collaboration between
industry, academia, and standardization bodies. By addressing
the existing challenges and embracing emerging technologies,
the future of 5G and beyond will deliver unprecedented levels
of precision, reliability, and scalability for positioning systems
across the globe.
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