

Multi-Criteria Selection and Configuration of IoT Network Technologies

Public PhD Defense

October 4th, 2023, ENS de Lyon, Salle des Thèses

Presented by Samir Si-Mohammed

Jury:

- Alexandre Guitton (UCA),
- Angela Nicoara (HSLU),
- Fabrice Théoleyre (CNRS),
- Thomas Watteyne (Inria),

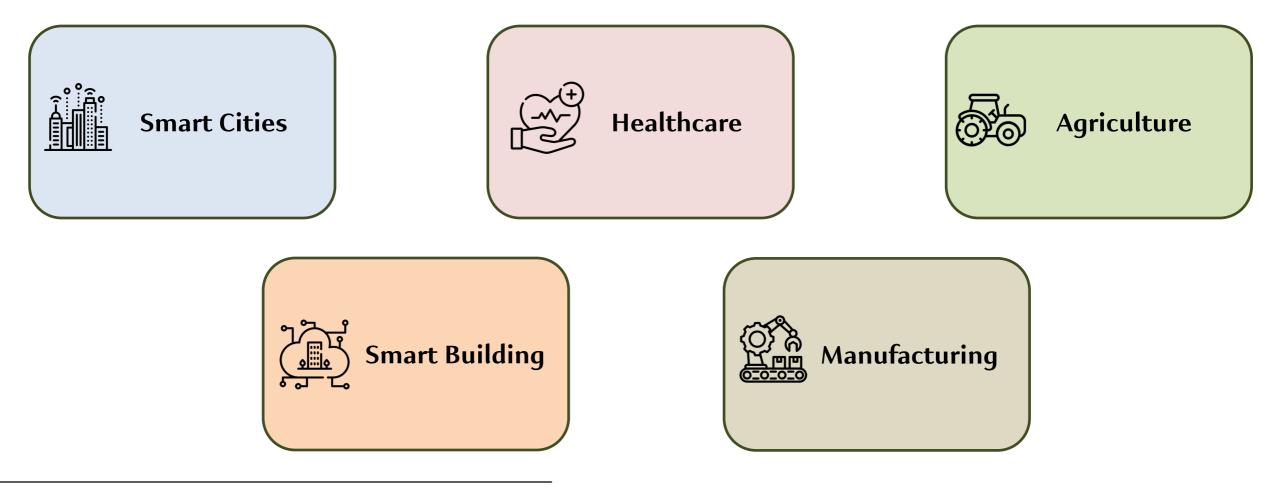
STACKEO

President

Examiner

Reviewer

Reviewer


Supervisors:

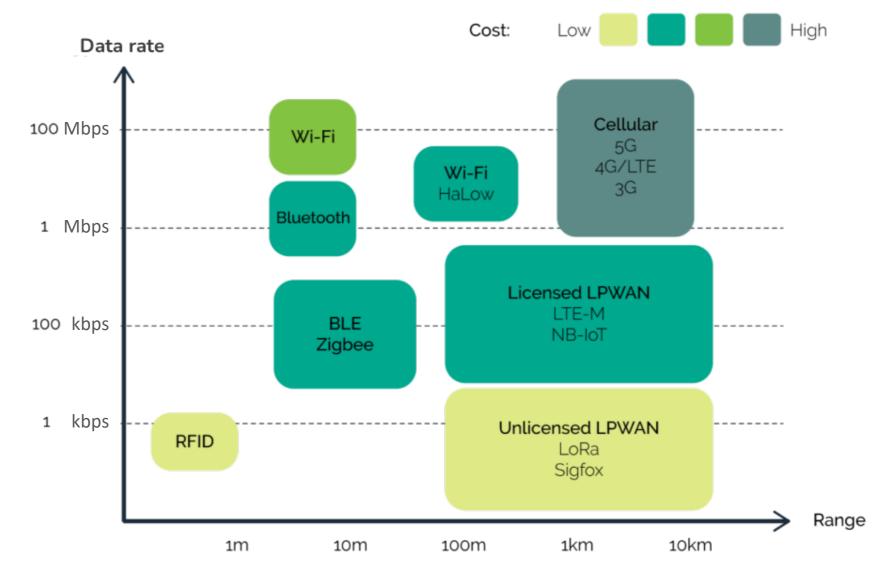
- Thomas Begin (UCBL)
- Isabelle Guérin Lassous (UCBL)
- Pascale Vicat-Blanc (Inria)

IoT Ecosystem


- « Internet of Things is a global infrastructure enabling advanced services by interconnecting (physical and virtual) things based on network technologies » [1]
- Main impacted sectors:

[1] Biggs, Philippa, et al. "Harnessing the Internet of Things for global development." ITU (2016).

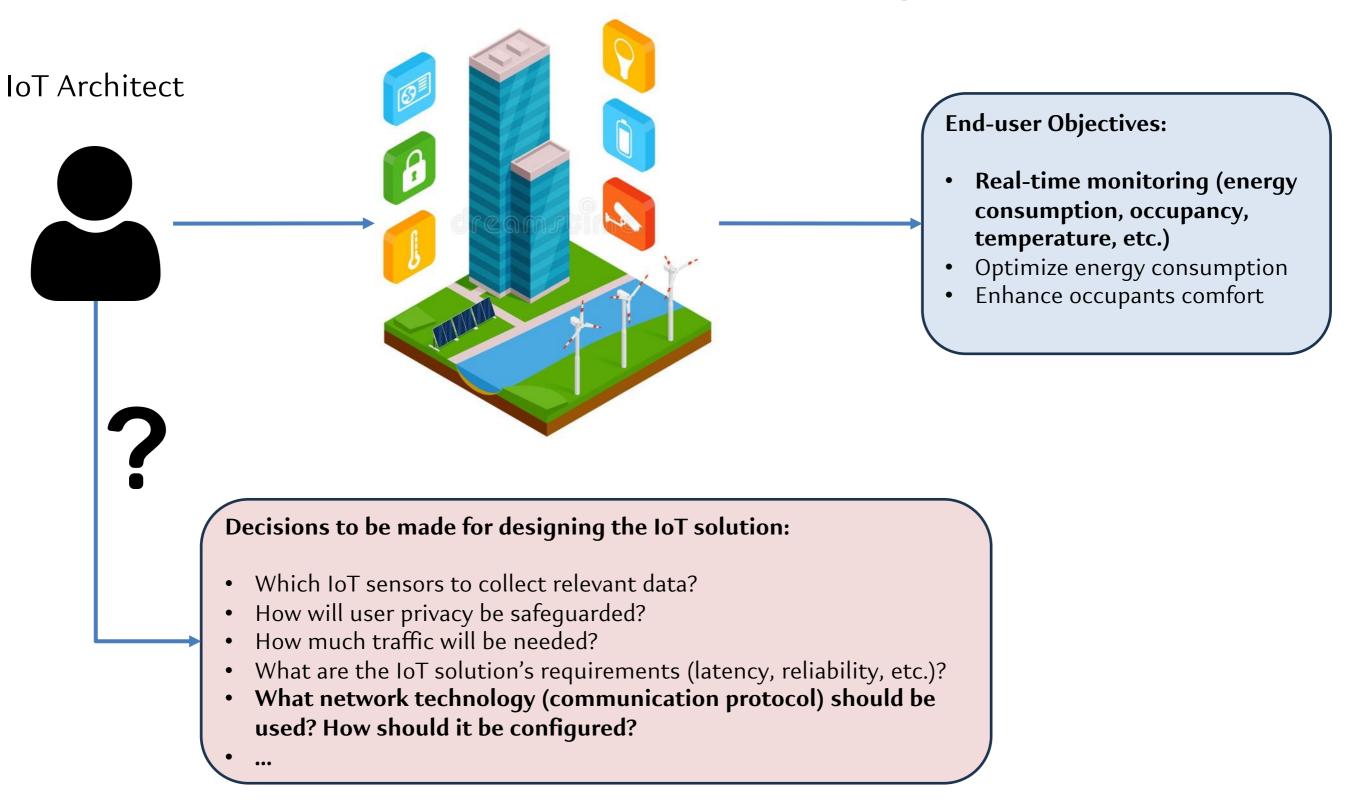
IoT Solution Architecture


• Typical IoT solution architecture [2]:

^[2] Abu Al-Haija, Qasem, et al. "An Efficient Deep Learning-based Detection and Classification System for Cyber-attacks in IoT Communication Networks." Electronics (2020)..

IoT Network Technologies

Multiple available network technologies*:



It is challenging to select the right network technology and configuration for an IoT solution

(*) https://embeddedams.nl

Samir Si-Mohammed

Illustrative Example: Smart Building

Outline

- Introduction
- Contribution 1: IoT Network Technologies Evaluation
- **Contribution 2:** IoT Network Technologies Selection & Configuration
- **Contribution 3**: Addressing the Limits of Simulation
- Contribution 4: IoT Network Technologies No-Code Simulation
- Conclusion

IoT Network Technologies Evaluation

Contribution 1

IoT Network Technologies Evaluation

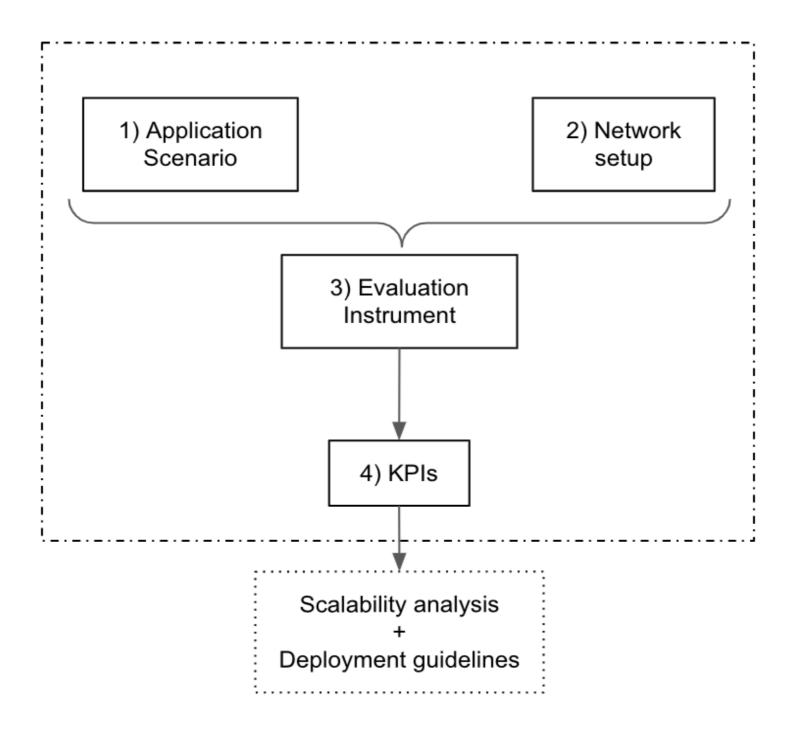
Problem Statement

Objective: Analyze the performance of a network technology for an IoT application

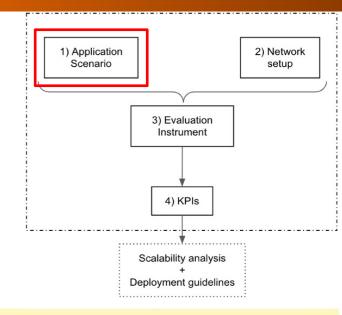
IoT application = Adaptation of an IoT solution in a given context

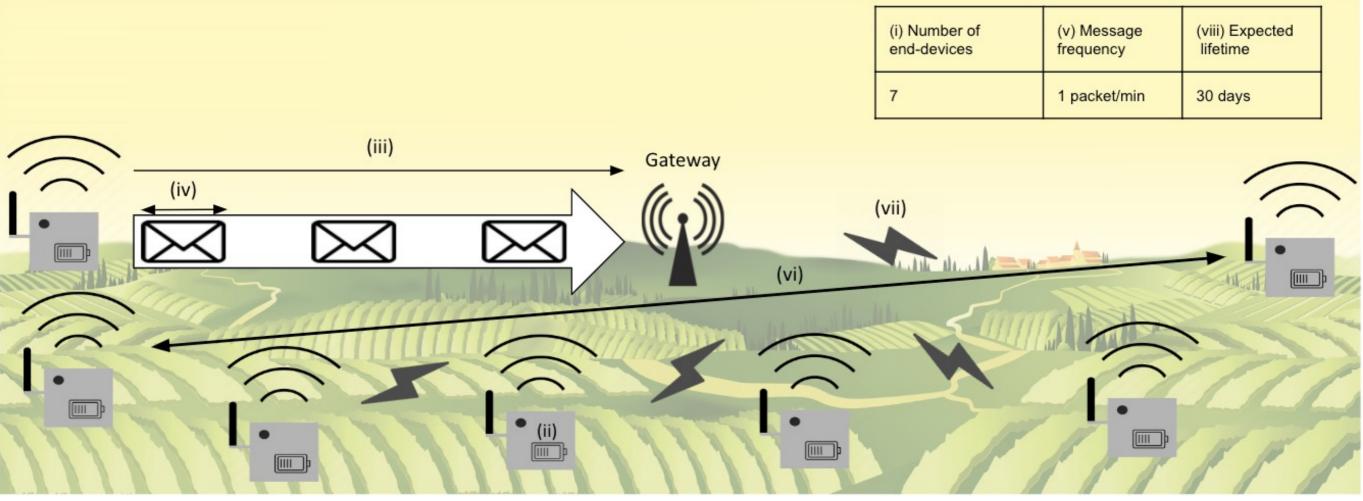
Different aspects to consider:

- 1. IoT applications can be defined by several parameters
- 2. Network technologies can be configured in different ways
- 3. Network technologies can be evaluated using several approaches
- 4. The performance of a network technology can be measured using different metrics
- Most works in the SOTA [3-6] neglect important parameters in the evaluation (application model, network configuration, KPIs, etc.)


Can we propose a holistic approach to analyze the match between a network technology and an IoT application?

^[3] Ayoub, Wael, et al. "Technology Selection for IoT-based Smart Transportation Systems." Vehicular Ad-hoc Networks for Smart Cities. Springer Singapore, 2020.


^[4] Senouci, Mohamed Abdelkrim, et al. "TOPSIS-based Dynamic Approach for Mobile Network Interface Selection." Computer Networks (2016).


^[5] Lalle, Yandja, et al. "A Comparative Study of LoRaWAN, Sigfox, and NB-IoT for Smart Water Grid." Global Information Infrastructure and Networking Symposium (GIIS). IEEE, 2019. [6] Sommers, Joel, and Paul Barford. "Cell vs. WiFi: On the Performance of Metro Area Mobile Connections." Internet Measurement Conference. 2012.

Proposed Solution

Application Modeling

End-devices:

- (i) (Min/max) Number of end-devices
- (ii) Battery capacity

Workload:

- (iii) Traffic direction
- (iv) Message size
- (v) (Min/max) Message frequency

Environment:

- (vi) Deployment scope
- (vii) Deployment environment
- (viii) Expected lifetime

PhD Thesis Defense

October 04th, 2023

Network Setups Abstraction

Considerd network technologies, with their respective setup:

LoRal//AN°

Channel width (125/250 KHz)

Cyclic redundancy check (CRC)

Frequency band (868 MHz)

Spreading Factor (SF)

Confirmed traffic

Coding rate

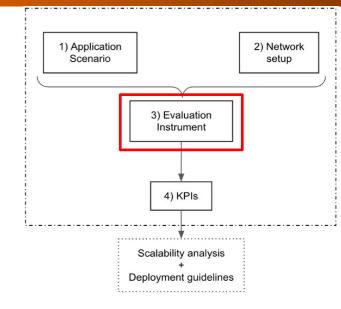
- Channel width (20/40/80 MHz)
- Frequency band (2.4/5 GHz)
- Nb. of spatial streams
- Guard interval
- Frame aggregation
- Modulation and Coding Scheme (MCS)

- Channel width (1 GHz)
- Frequency band (24 GHz)
- 5G NR Numerology
- Hybrid Automatic Repeat Request (HARQ)
- RLC-Acknowledge Mode

1) Application Scenario 2) Network setup 3) Evaluation Instrument 4) KPIs Scalability analysis + Deployment guidelines

802.15.4

- Channel width (5 MHz)
- Frequency band (2.4 GHz)
- Frame retries
- CSMA backoffs
- Maximum backoff exponent
- Minimum backoff exponent

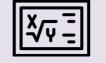

Wi-Fi HaLow

- Channel width (1/2 MHz)
- Frequency band (868 MHz)
- Guard interval
- Beacon interval
- Nb. RAW groups
- MCS

PhD Thesis Defense

October 04th, 2023

Evaluation Approaches


Experimentation

Pros:

- High Accuracy
- Real Data

Cons:

- Low Scalability
- High Cost
- Time-consuming

Analytical Models

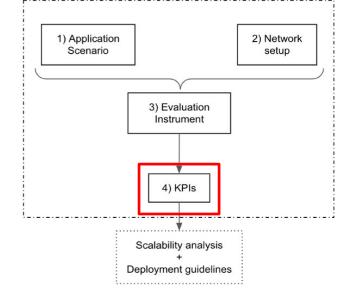
Pros:

- High Scalability
- Low Cost
- Low Computing Time

Cons:

- Low Accuracy
- Low Flexibility

Simulation


Pros:

- High Scalability
- High Flexibility
- Relative Accuracy
- Low Cost

Cons:

- High Computing Time
- Relative Accuracy

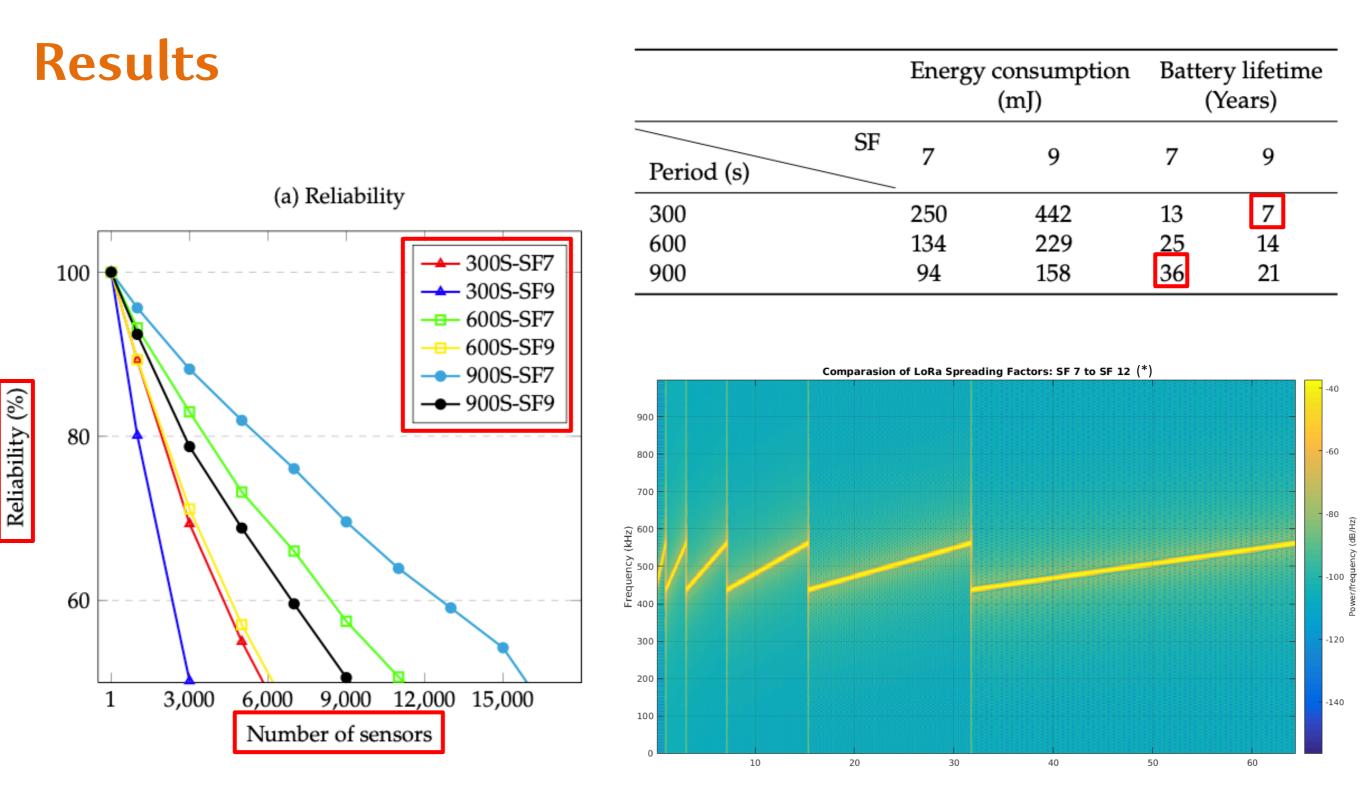
Key Performance Indicators

- End-to-end Reliability: The ratio of the packets successfully received over all the sent ones
- **Message Latency**: Time taken by a packet from source to destination
- Energy Consumption: How much energy is consumed by a device. We can derive from it:
 - Battery Lifetime: End-devices battery lifetime (depends on battery capacity)
- Cost: Deploying and maintaining the network for the lifetime of the deployment

Example of Application

• Considered application (smart metering) and network technology:

Application modeling	Parameters	Values
End-devices	 Minimal number Maximal number Battery capacity (Amperes.hour) 	1 15,000 2.4
Workload	 Traffic direction Message size (bytes) Minimal frequency (packets/second) Maximal frequency (packets/second) 	Upstream 23 0.001 0.003
Environment	 Type Scope (meters) Expected lifetime (days) 	Suburban 3000 N/A



- Channel width = 125 KHz
- SF dynamically adjusted by the LoRa manager
- Coding rate = 1
- No cyclic redundancy check
- Unconfirmed traffic

Evaluation Tool: Simulation using ns-3 [7]

^[7] Henderson, Thomas R., et al. "Network Simulations with the ns-3 Simulator." SIGCOMM Demonstration 14.14 (2008): 527.

Spreading Factor (SF): Determines the chirp rate (speed at which the signal frequency changes). Can take values from 7 to 12. Higher SF → Lower data rate.

(*) <u>https://support.machineq.com/s/article/What-is-the-Spreading-Factor-SF</u>

Samir Si-Mohammed

Summary

Contribution:

- ✓ Generic evaluation framework including:
 - High-level application modeling
 - Network technologies setup abstraction
 - Based on simulation
 - IoT-relevant KPIs

Limitations:

- Simple topologies with one gateway
- No automatic network technologies selection and configuration

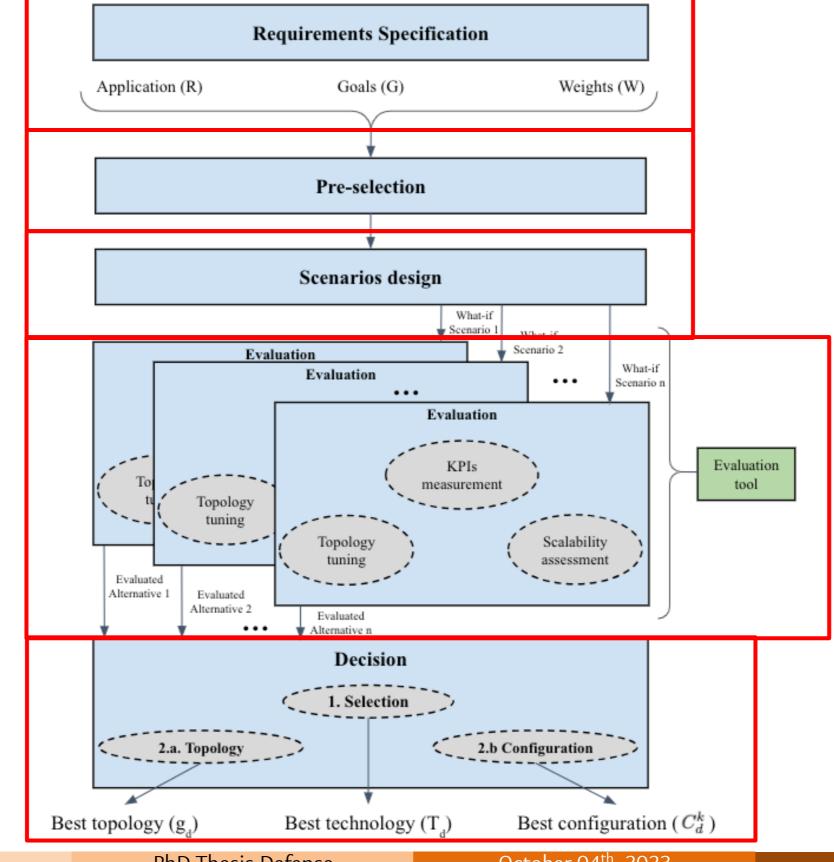
Contribution 2

IoT Network Technologies Selection and Configuration

Problem Statement

Objective: Automatic network technology selection and configuration

- The comparison must be made on different alternatives according to several criteria (QoS, energy consumption, etc.)
 Multi-Attribute Decision Making (MADM) methods [8]
- MADM is used for network selection (for example in [9], [3] and [10]), but without a rigorous KPIs evaluation
- Can we define a method for the automatic selection of the network technology and its configuration?

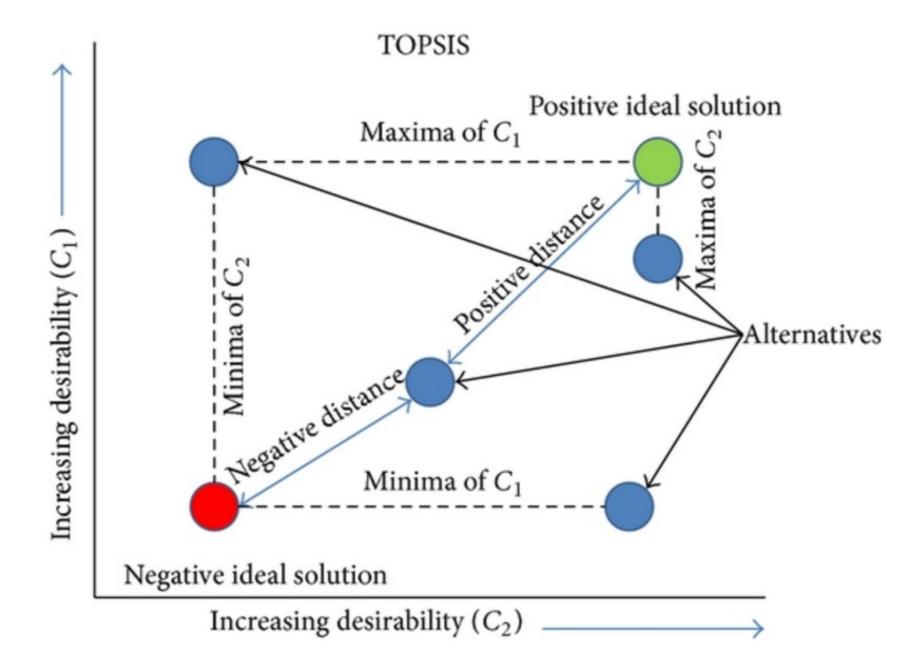

^[8] Yoon, K. Paul, and Ching-Lai Hwang. "Multiple Attribute Decision Making: An Introduction". Sage publications, 1995.

^[9] F. Bari and V. Leung, "Multi-Attribute Network Selection by Iterative TOPSIS for Heterogeneous Wireless Access," IEEE CCNC, 2007.

^[3] Ayoub, Wael, et al. "Technology Selection for IoT-based Smart Transportation Systems." Vehicular Ad-hoc Networks for Smart Cities. Springer Singapore, 2020.

^[10] Bazrafkan, Armin, and Mohammad R. Pakravan. "An MADM network selection approach for next generation heterogeneous networks." IEEE ICEE, 2017.

Proposed Solution - HINTS


Samir Si-Mohammed

PhD Thesis Defense

October 04th, 2023

MADM Method - TOPSIS

• Technique for Order of Preference by Similarity (TOPSIS) [11]

^[11] Chauhan, Aditya, and Rahul Vaish. "A Comparative Study on Decision Making Methods with Interval Data." Journal of Computational Engineering (2014).

Example of Application 1: Selection

		Application modeling	Parameters	Values
		End-devices	 Minimal number Maximal number Battery capacity (Amperes.hour) 	50 100 2.4
 Considered applicat 	tion (smart building):	Workload	 Traffic direction Message size (bytes) Minimal frequency (packets/second) Maximal frequency (packets/second) 	Upstream 100 1 1
 Considered network 	< technologies:	Environment	 Type Scope (meters) Expected lifetime (days) 	Indoor 50 730
	Wi-Fi HaLow		802.15.4	
Channel width = 80 MHz One spatial stream Long guard interval No frame aggregation	 Channel width = 2 MHz Long guard interval Beacon interval = 51200 ms One RAW group 	FraCSMa	annel width = 5 MH: ame retries = 4 MA backoffs = 5 aximum backoff expo nimum backoff expo	onent = 4

Results 1: Selection

Network to	echnology	Minimal deployment (50 end-devices)			Maximal deployment (100 end-devices) Scalability factor: 1					
Technology	Nb. of GW	Reliability	Battery Lifetime	Message Latency	Cost	Reliability	Battery Lifetime	Message Latency	Cost	Score
		Weight: 1 Unit: % Goal: >90	Weight: 1 Unit: d Goal: >80	Weight: 1 Unit: ms Goal: <100	Weight: Unit: \$	Weight: 1 Unit: % Goal: >90	Weight: 1 Unit: d Goal: >80	Weight: 1 Unit: ms Goal: <100	Weight: 1 Unit: \$	
Wi-Fi	1	42.0	61.72	0.05	3850	30.0	49.1	0.05	9100	0.02
Wi-Fi	2	80.0	66.28	0.05	3700	86.0	61.24	0.05	7700	0.07
Wi-Fi	3	87.5	66.45	0.05	3800	96.97	85.86	0.05	5800	0.32
Wi-Fi	4	100.0	89.09	0.05	3150	100.0	88.38	0.05	5900	0.46
Wi-Fi	5	100.0	89.27	0.05	3150	100.0	88.71	0.05	5900	0.46
HaLow	1	100.0	362.16	48.41	2250	100.0	277.78	57.28	3500	0.87
HaLow	2	100.0	421.69	48.9	3000	100.0	331.8	58.72	4500	0.93
802.15.4	1	54.31	91.76	29.62	3700	44.63	71.44	12.61	9700	0.12
802.15.4	2	94.46	125.07	12.38	3400	88.29	85.75	21.67	7400	0.36
802.15.4	3	98.09	142.95	16.47	3350	94.10	112.28	7.46	7100	0.49

Example of Application 2: Configuration

- HINTS can also be used for configuring a network technology
- Considered application (smart metering) and network technology:

Application modeling	Parameters	Values
End-devices	 Minimal number Maximal number Battery capacity (Amperes.hour) 	200 300 2.4
Workload	 Traffic direction Message size (bytes) Minimal frequency (packets/second) Maximal frequency (packets/second) 	Upstream 30 0.005 0.005
Environment	 Type Scope (meters) Expected lifetime (days) 	Rural 1500 3650

- SF = ?
- Coding rate = ?
- Confirmed traffic ?

Results 2: Configuration

	Configura	ation Minimal deployment (50 end-devices) Maximal deployment (100 end-d Scalability factor: 1			Minimal deployment (50 end-devices)			evices)			
SF	Coding Rate	Traffic Type	Reliability	Battery Lifetime	Message Latency	Cost	Reliability	Battery Lifetime	Message Latency	Cost	Score
			Weight: 1 Unit: % Goal: >90	Weight: 1 Unit: d Goal: >730	Weight: 1 Unit: ms Goal: <1000	Weight: 1 Unit: \$	Weight: 1 Unit: % Goal: >90	Weight: 1 Unit: d Goal: >730	Weight: 1 Unit: ms Goal: <1000	Weight: 1 Unit: \$	
7	1	0	95.78	2560.7	82.17	12000	95.73	2560.7	82.17	17500	0.98
7	1	1	99.44	331.37	82.17	112000	99.19	332.6	82.176	167500	0.51
7	4	0	93.65	1819.54	82.17	22000	93.74	1819.54	82.176	17500	0.81
7	4	1	98.65	232.95	82.17	152000	97.83	234.18	82.176	227500	0.5
12	1	1	43.47	126.44	197.4	282000	31.97	114.1	197.4	467500	0.0
12	1	0	43.31	126.44	197.4	282000	31.78	112.7	197.4	482500	0.38
12	4	1	33.29	126.77	197.4	282000	22.33	232.95	197.4	422500	0.38
12	4	1	33.11	126.77	197.4	282000	22.13	232.95	197.4	422500	0.38

Summary

Contribution:

- Automatic selection methodology considering:
 - Multi-criteria comparison
 - Topology
 - Configuration

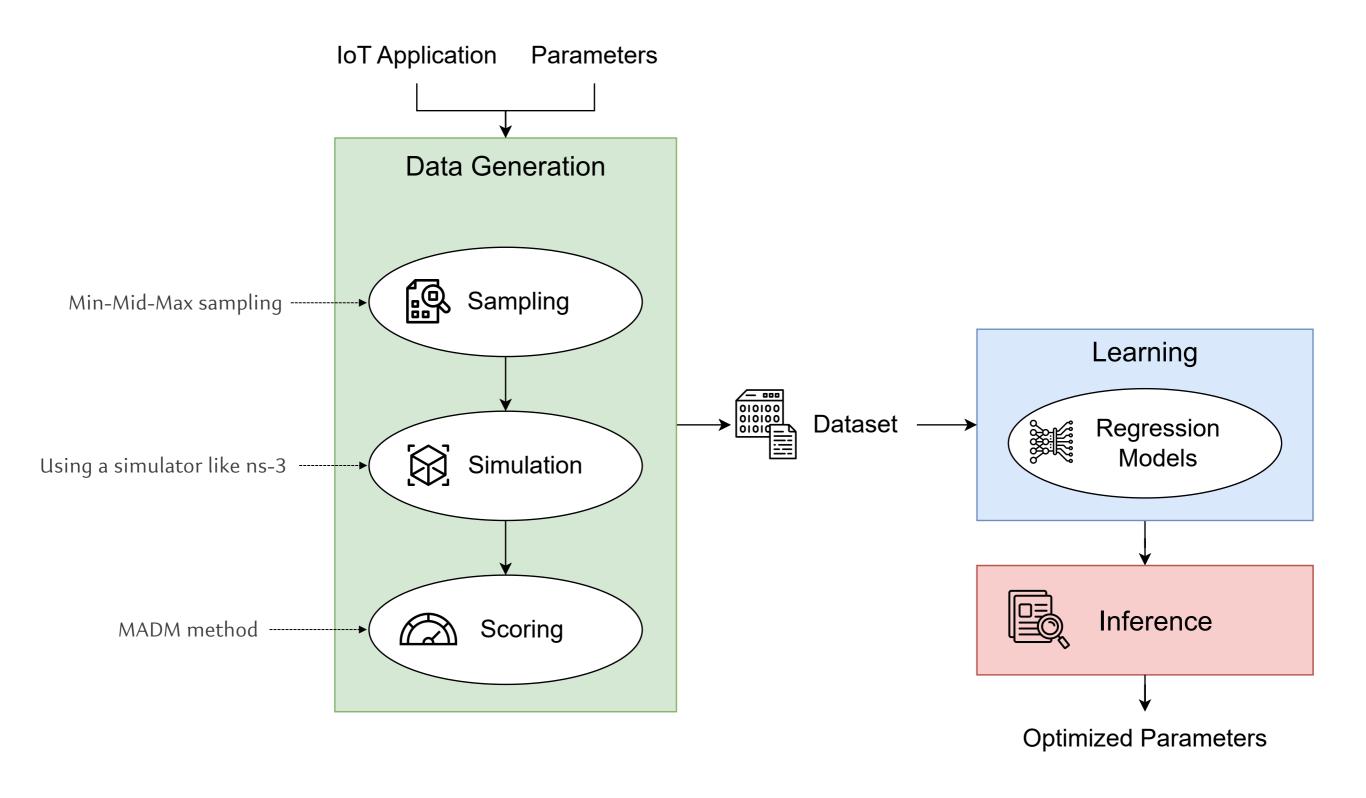
Limitations:

- Accessibility of the solution
- Computing time for a more rigorous configuration decision (>7 hours for the previous application LoRa)
- Simulation accuracy

Addressing the Limits of Simulation

Contribution 3

Addressing the Limits of Simulation


Problem Statement

Objective: Reducing the number of simulations for the configuration decision

- A single network technology can be configured differently with an impact on its performance
- Using HINTS can help. However, the range of possible configurations is considerable
 - Important number of simulations: For n different parameters, where each one can take m different values, a comprehensive simulation would lead to mⁿ simulations

Can we use surrogate modeling and machine learning to reduce the number of simulations?

Proposed Solution - COSIMIA

Application

Considered application (smart metering) and network technology:

Application modeling	Parameters	Values
	Minimal number	50
End-devices	 Maximal number 	50
	 Battery capacity 	2.4
	(Amperes.hour)	
	Traffic direction	Upstream
Workload	 Message size (bytes) 	100
WORKIOAU	Minimal frequency	1
	(packets/second)Maximal frequency	1
	(packets/second)	
	• Type	Suburban
Environment	 Scope (meters) 	200
	• Expected lifetime (days)	N/A

802.15.4

- Frame retries = ?
- CSMA backoffs = ?
- Maximum backoff exponent = ?
- Minimum backoff exponent = ?

Example of Application

Proximity: Ratio of the score of the best solution on the optimal one (through the comprehensive simulation)

Model	Solution		KPIs			Data g	eneration	Proximity
		Reliability (%)	Energy consumption (Watts)	Latency (ms)	Cost (\$)	Time (minutes)	Number of simulations	
Comprehensive simulation	[3,4,3,4,0]	92	0.03	5.56	300	1367	23040	N/A
Gradient boosting	[3,5,3,5,3]	99.37	0.032	5.58	300	26	405	0.99
Extra trees	[3,6,0,0,4]	93.75	0.031	3.91	300	1	1	0.99
Random forest	[3,8,7,5,3]	100	0.033	31.16	300			0.98
KNN	[3,8,7,5,6]	100	0.033	31.16	300			0.98
SVR	[5,7,7,5,6]	100	0.03	30.15	500			0.94
Linear regression	[10,8,7,5,7]	100	0.02	26.02	1000			0.79

Results format: [NGW,MaxBE,MinBE,CB,FR]

Summary

Contribution:

- Method for accelerating configuration decision process:
 - Important computing time reduction
 - Generic method

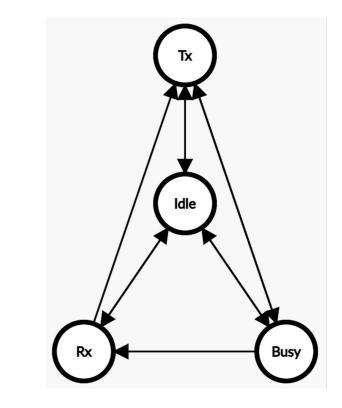
Limitations:

- No theoretical guarantee (heuristic)
- Simulation accuracy

Problem Statement

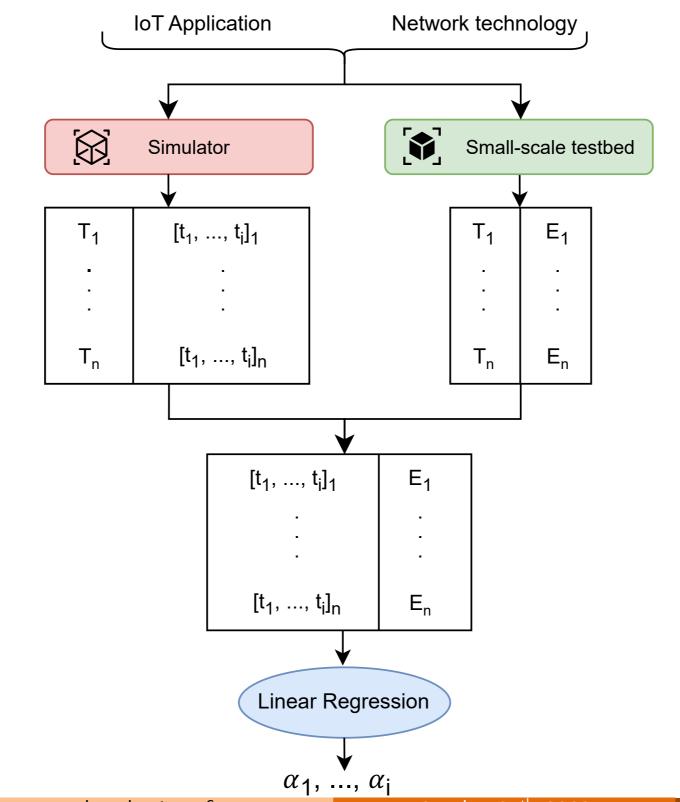
Objective: Enhancing the simulation credibility

- We focus here on the energy consumption calculation
- Simulators use state machines to calculate energy consumption.
 - The nodes can be in different physical states (Tx, Rx, etc.)
 - Each state is associated to a current consumption value
 - Energy is calculated with:


$$E = \sum_{i \in S} (\alpha_i \cdot t_i) \cdot V$$

where:

- *E* in the energy in Joules,
- *S* is the set of possible states of the physical NIC,
- α_i is the current consumption value of state i in Amperes,
- t_i is the time passed in state i in Seconds,
- *V* is the voltage in Volts, which is considered constant
- The α_i values depend on the used radio chip
- May lead to errors if the simulator transitions are not accurate


Can we calibrate energy consumption models in simulators using real data?

Samir Si-Mohammed

Proposed Solution

• Assumption: Small testbed with access to energy consumption measurements

October 04th, 2023

Example of Application

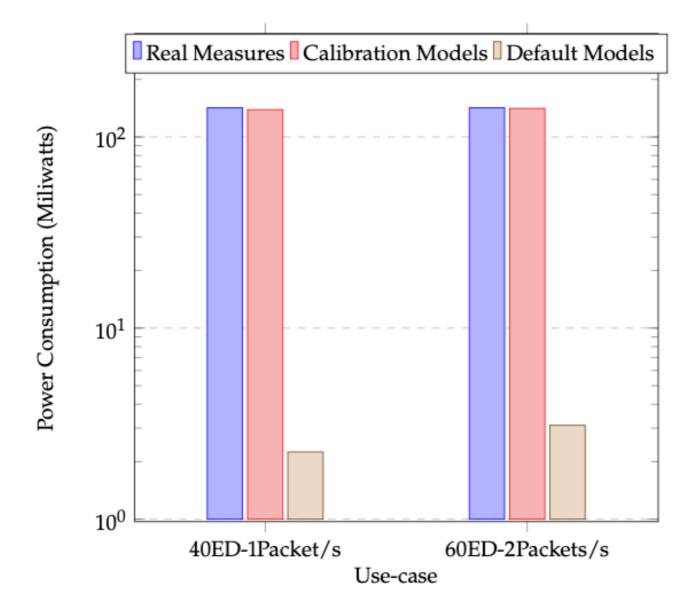
metering) with 802.15.4:

Application modeling	Parameters	Case Study
	Minimal number	40
End-devices	 Maximal number 	60
	 Battery capacity (Amperes.hour) 	2.4
	Traffic direction	Upstream
Workload	• Message size (bytes)	100
Workload	• Minimal frequency (packets/second)	1
	 Maximal frequency (packets/second) 	2
	• Type	Suburban
Environment	 Scope (meters) 	200
	• Expected lifetime (days)	N/A

- We use the FIT IoT-Lab [12] as an experimental platform for our testbed
 - Open-source experimentation platform
 - M3 boards equipped with radio chips supporting IEEE 802.15.4 norm
 - Radio sniffer for RSSI and energy measurement tools

We consider the following application (smart

Firmwares implemented using the RIOT [13] Operating System



^[12] Adjih, Cedric, et al. "FIT IoT-LAB: A Large scale Open Experimental IoT Testbed." 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT). IEEE, 2015.

^[13] Baccelli, Emmanuel, et al. "RIOT OS: Towards an OS for the Internet of Things." 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2013.

Results

• We show the impact on the calibration for both the initial and scaled deployment:

Summary

Contribution:

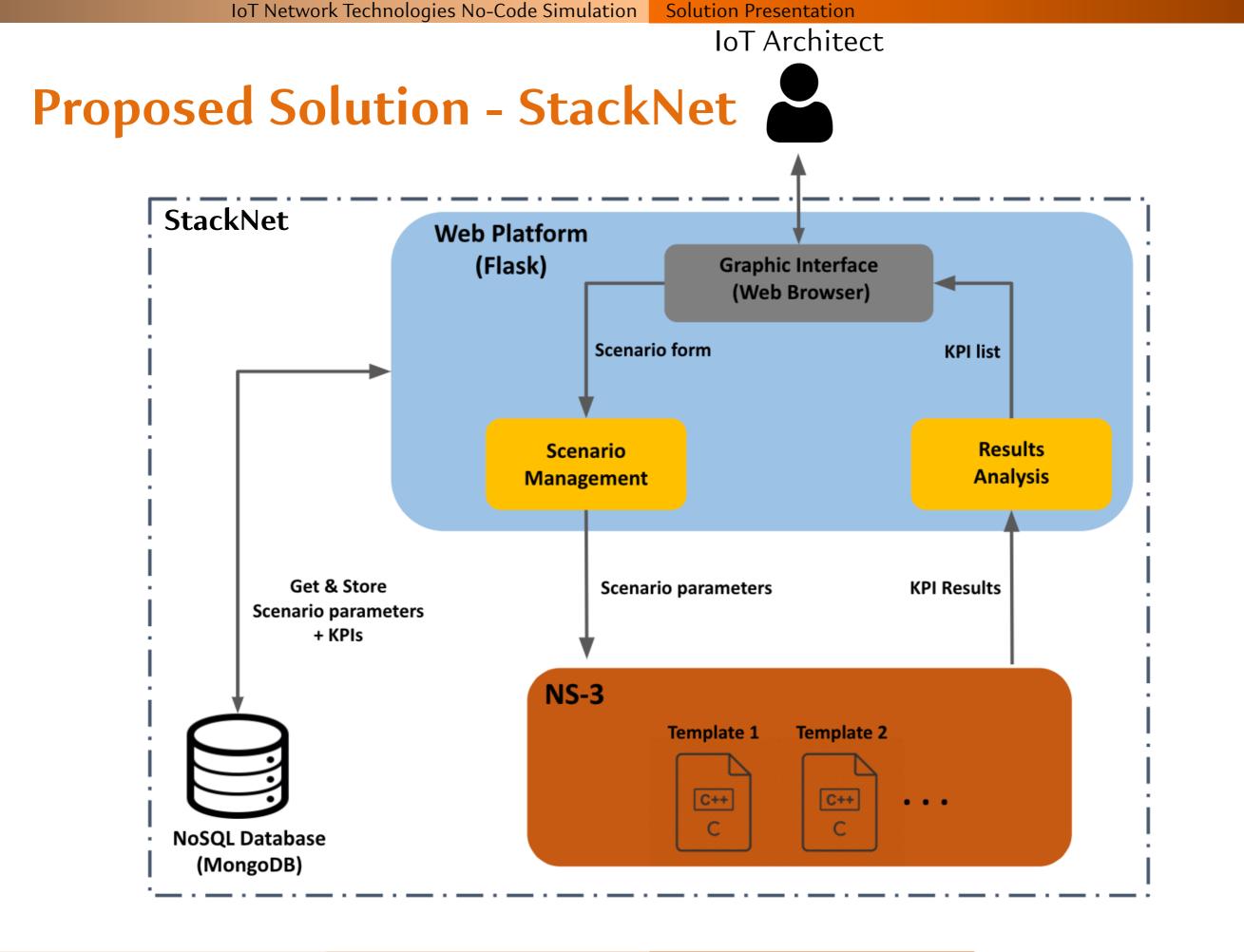
- Method for calibrating energy consumption models in simulation:
 - Data from real measures
 - Validation using a real testbed

Limitations:

- Costly infrastructure
- Considers only energy consumption

Contribution 4

IoT Network Technologies No-Code Simulation

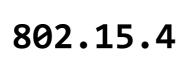

Problem Statement

Objective: Allowing non-network experts to use simulation

- IoT architect needs:
 - Assess the suitability of a network technology for a specific application
 - Optimize the network configuration to align with evolving deployment requirements
- Complexity of the simulation workflow for non-network experts

Can we abstract the simulation complexity?

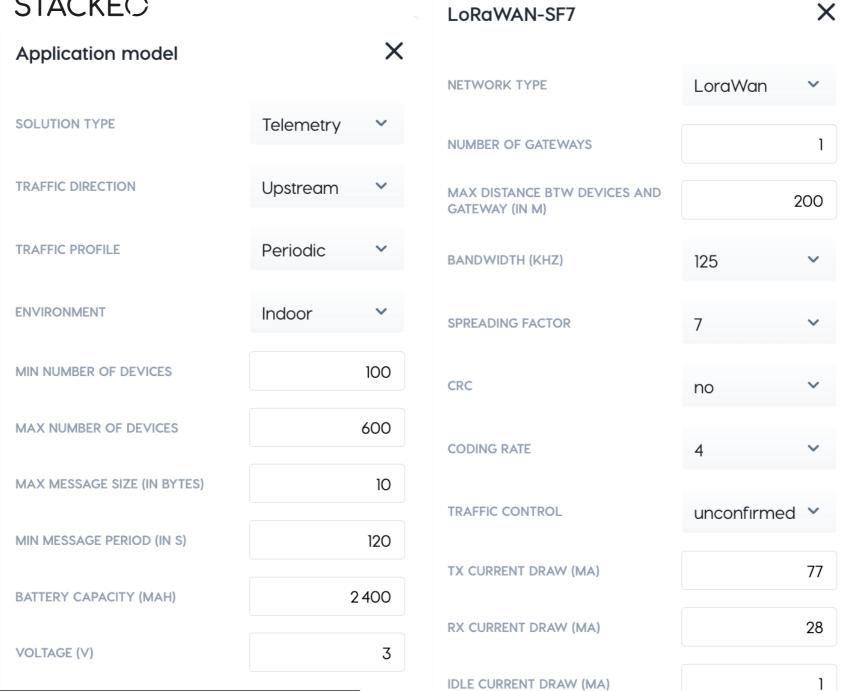
- Describe the application and the network technology
- Compare a set of simulation scenarios


Example of Application

Considered application (smart building):

Application modeling	Parameters	Case Study
End-devices	 Minimal number Maximal number Battery capacity (Amperes.hour) 	100 600 2.4
Workload	 Traffic direction Message size (bytes) Minimal frequency (packets/second) Maximal frequency (packets/second) 	Upstream {100, 110} 0.016 0.032
Environment	 Type Scope (meters) Expected lifetime (days) 	Indoor 200 N/A

Considered network technologies:



Example of Application

StackNet is integrated in the STACKEO* platform

STACKEO

(*) https://stackeo.io

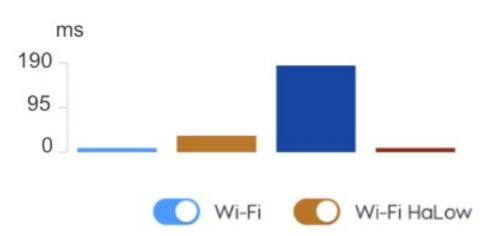
Samir Si-Mohammed

PhD Thesis Defense

October 04th, 2023

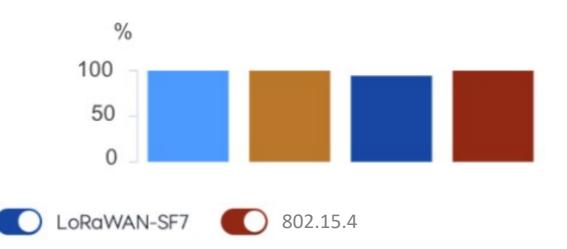
Example of Application

Architecture Volumetry	Network				
Simulation settings	Scenario 7	×	Performance indicators		
🔅 Application model	NETWORK TYPE	Wi-Fi 802.11a 🗸	GOODPUT (UPSTREAM)	BATTERY LIFE TIME PER DEVICE	GOODPUT (DOWNSTREAM
3 Simulation parameters	NUMBER OF GATEWAYS	1	O.65 Kbps	87 days	N/A
	MAX DISTANCE BTW DEVICES AND GATEWAY (IN M)	50			
Network scenarios	BANDWIDTH (MHZ)	20 ~	Upstream indicators		
Scenario comparison	MCS	6 ~	AVERAGE PACKET DELIVERY	AVERAGE PACKET LATENCY	ENERGY CONSUMPTION PE
Scenario 5	SPATIAL STREAMS	1 ~	100 %	0.07 ms	1.O4 j
Scenario 7	TX CURRENT DRAW (MA)	107			
CA Natural actions	RX CURRENT DRAW (MA)	40	Scalability analysis		
Network settings	IDLE CURRENT DRAW (MA)	1	Goodput		
Scenario 8	CCA_BUSY CURRENT DRAW (MA)	1			
Add a scenario			6.00Kbps		0
			3.00Kbps		
			0		
			0.00Kbps 200	400	600


Results

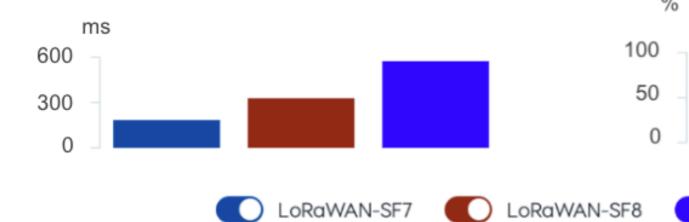
Network technologies comparison:

Packet latency


Goodput

Battery lifetime

Packet delivery


Results

Goodput

LoRa configuration decision:

Packet latency

Battery lifetime

Packet delivery

Summary

Contribution:

- ✓ No-code platform that:
 - Captures the major needs of IoT architects and hides the complexity of simulation
 - Allows to make decisions about the design and the configuration of an IoT solution in an interactive way

Limitations:

- Considers random end-devices placement
- Based on simulation only

Conclusion & Perspectives

Conclusion

Contributions:

- Simulation-based framework for evaluating IoT network technologies for a given application
- Multi-criteria method for automatically selecting and configuring an IoT network technology
- ML-based method for accelerating the configuration decision process
- ML-based method for calibrating energy consumption models of simulation
- No-code platform to abstract the simulation complexity

Limitations:

- Availability of other network technologies (NB-IoT, LTE-M, BLE, etc.)
- Availability of other network simulators

Perspectives

- HINTS as a general network evaluation and comparison framework:
 - Include applications with mobility
 - Include mesh topologies (routing, load-balancing, etc.)
 - Include other KPIs (security, environmental impact, etc.)
 - Use Pareto-front exploration methods [14] instead of MADM methods
- Addressing the limits of simulation as IoT network evaluation tool:
 - Combining experimentation with simulation
 - Explore the calibration of other parameters such as RSSI ([15])
 - Consider a "smarter" space exploration method for COSIMIA (*e.g.*, using Bayesian Optimization)
 - Extend simulation and experimentation combination to Network Digital Twin
 - Ongoing work, submitted to FGCS [16]
- No-code platform:
 - Integrate other simulators and testbeds
 - Consider different nodes placement models
 - Ongoing work with a team from University at Buffalo, USA

^[14] Paria, Biswajit, et al. "A Flexible Framework for Multi-objective Bayesian Optimization using Random Scalarizations." Uncertainty in Artificial Intelligence. PMLR, 2020.

^[15] S. Si-Mohammed, et al. "Smart Integration of Network Simulation in Network Digital Twin for Optimizing IoT Networks". Submitted to FGCS, Elsevier. 2023.

^[16] Almeida, Eduardo Nuno, et al. "Position-Based Machine Learning Propagation Loss Model Enabling Fast Digital Twins of Wireless Networks in ns-3." arXiv preprint (2023).

Thank you for your attention

International Journals and Conferences:

- **S. Si-Mohammed**, T. Begin, I. Guérin Lassous, P. Vicat-Blanc. "HINTS: A Methodology for IoT Network Technology and Configuration Decision". *Internet of Things Journal,* Elsevier, 2023.
- **S. Si-Mohammed**, T. Begin, I. Guérin Lassous, P. Vicat-Blanc. "Introducing ADIperf, a Framework for Application-driven IoT Network Performance Evaluation". *IEEE ICCCN*, July 2022.
- **S. Si-Mohammed**, M. Janumporn, T. Begin, I. Guérin Lassous, P. Vicat-Blanc. "SIFRAN: Evaluating IoT with a Framework based on ns-3". *ACM LANC*, October 2022.
- **S. Si-Mohammed**, Z. Fraoui, T. Begin, I. Guérin Lassous, P. Vicat-Blanc. "StackNet: Network Simulation as a Service". *IEEE ICC*, May 2023.

Submitted

 S. Si-Mohammed, A. Bardou, T. Begin, I. Guérin Lassous and P. Vicat-Blanc. "Smart Integration of Network Simulation in Network Digital Twin for Optimizing IoT Networks". *Future Generation Computer Systems*, Elsevier. 2023.

National Conferences

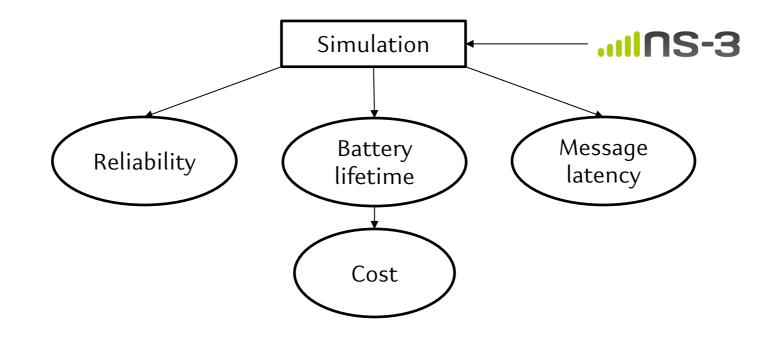
• **S. Si-Mohammed**, T. Begin, I. Guérin Lassous, P. Vicat-Blanc. "COSIMIA : Combiner Simulation et Apprentissage Automatique pour Optimiser la Configuration des Réseaux IoT". *CoRes*, May 2023.

Conclusion

Appendix

Samir Si-Mohammed

October 04th, 2023

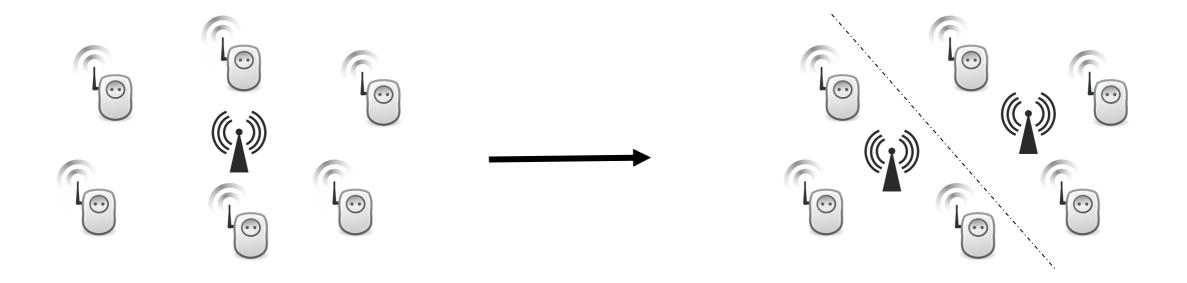

Environment Propagation Models

• Radio environments and their propagation models [17]:

Environment Type	Propagation Model
Indoor	HybridBuildings
Outdoor Rural	OkumuraHata
Outdoor Urban	COSTHata
Outdoor Suburban	LogDistance

^[17] Stoffers, Mirko, et al. "Comparing the ns-3 Propagation Models." IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2012.

Cost Calculation



 $Cost = p_{GW} * n_{GW} + p_{ED} * n_{ED} + (pe/bl) * p_{bc} * n_{ED}$

<i>p</i> _{GW}	Price of a gateway
n _{GW}	Number of gateways
<i>p</i> _{ED}	Price of an end-device
n _{ED}	Number of end-devices
pe	Expected scenario lifetime
bl	Estimated battery lifetime
<i>p</i> _{bc}	Price of a battery replacement

Topologies Modeling

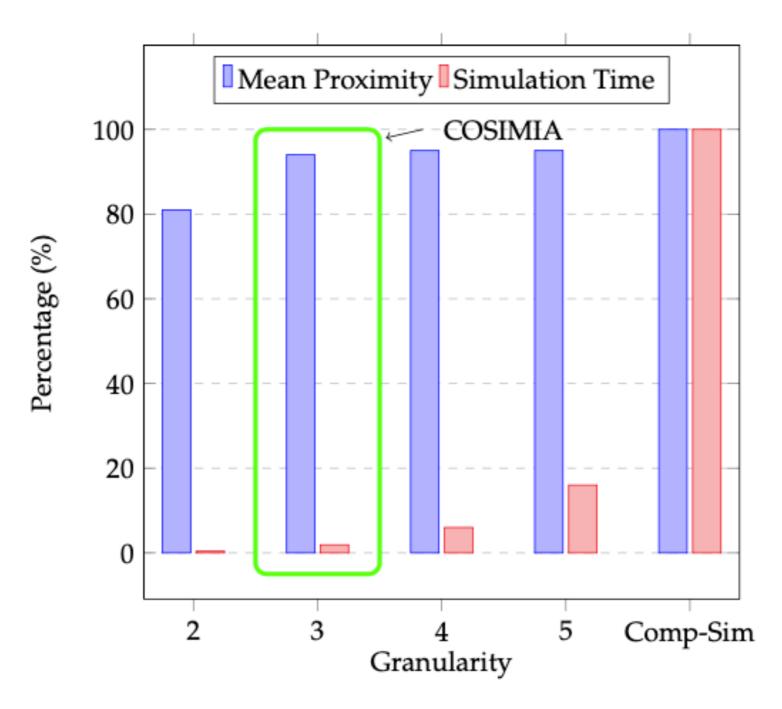
• The number of gateways is varied for each alternative:

 This number is varied until the targeted values are satisfied, or the performance improvement does not exceed 5%.

Pareto Front

• Points in red in the following figure (*) are not Pareto-dominated

(*) <u>https://en.wikipedia.org/wiki/Pareto_front</u>


Samir Si-Mohammed

Dataset Format

	Inpu	ıt						Out	out
nGW	sf	traffic_type_	coding_rate	crc	success_rate	energy	latency	price	score
3	8	1	2	1	91,25	0,00223759	238,08	3000	0,69705853
3	9	0	2	1	85,2	0,00050719	427,008	3000	0,67935014
3	9	1	2	1	97,47	0,00231686	427,008	3000	0,68267309
3	10	0	2	1	89,38	0,00089007	755,712	3000	0,79743684
3	10	1	2	1	100	0,00239554	755,712	3000	0,65457617
3	11	0	2	1	94,38	0,00199821	1708,03	3000	0,58826983
3	11	1	2	1	93,55	0,00219818	1708,03	3000	0,57321259
3	12	0	2	1	88,39	0,00247255	3022,85	3000	0,41632534
3	12	1	2	1	88,39	0,00247255	3022,85	3000	0,41632534
4	7	0	2	0	83,58	0,00015571	125,184	4000	0,69048149
4	7	1	2	0	95,83	0,00121376	125,184	4000	0,79111444
4	8	0	2	0	84,17	0,00027286	225,792	4000	0,8493187
4	8	1	2	0	100	0,00209729	225,792	4000	0,70091466
4	9	0	2	0	91,67	0,0004786	402,432	4000	0,83734485
4	9	1	2	0	100	0,00190094	402,432	4000	0,71031007

Sampling Granularity Impact

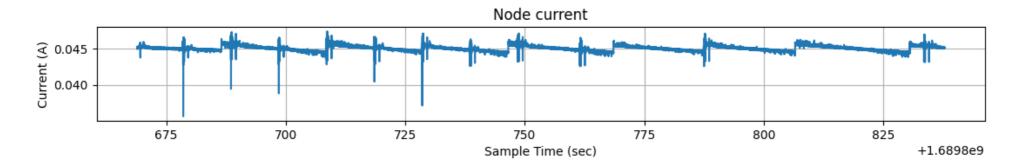
• **Granularity:** Number of parameters taken for the sampling

Calibration Need

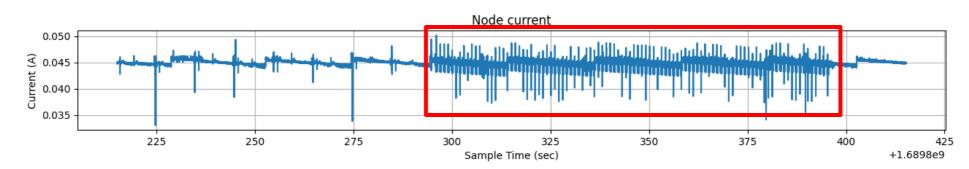
- Wi-Fi with a specific transmission workload
- When sending frame, the transitions are:
 - Idle -> Tx (Send frame)
 - Tx -> Idle (Finished sending)
 - Idle -> CCA_Busy (Detects signal in the medium for the ACK)
 - CCA_Busy -> RX (Receives ACK)
 - RX -> Idle (Goes back to Idle state)

State	Value
Тх	107
Rx	40
CCA_Busy	1

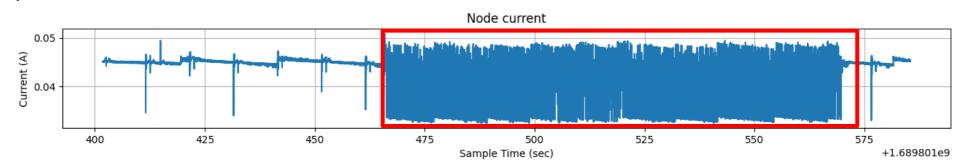
• Let's suppose the following transitions (in ms) for each packet sent:


State	Experimentation	Simulation
Тх	15	10
Rx	5	7
CCA_Busy	3	5
Energy (J) for 100 transmissions	0.518	0.387

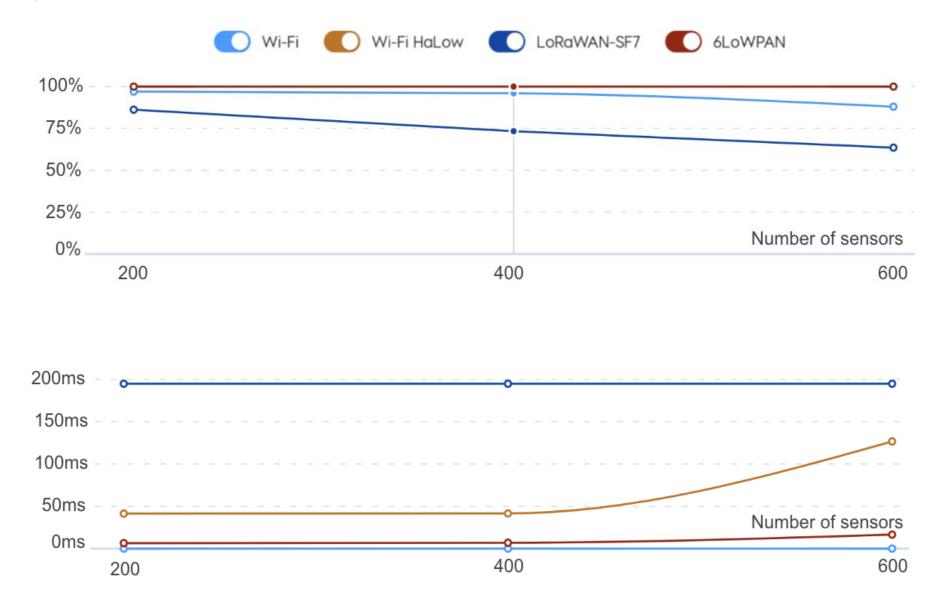
\diamond Important difference in the transitions \rightarrow Important error


Samir Si-Mohammed

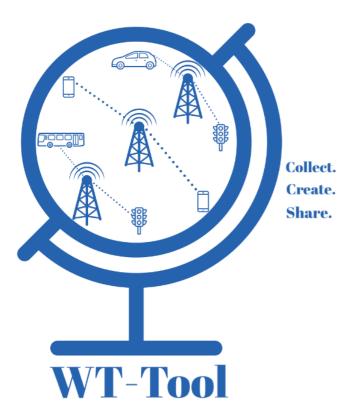
Energy Consumption in IoT-Lab


• Without transmission:

1 packet/s



10 packet/s


Scalability Analysis

 How will the network technologies behave when scaling the density (from 200 to 600 sensors) and the traffic workload (110 bytes-packets and a period of 90 seconds) ?

Integration to WT-Tool

• WT-Tool (*) is a graphical tool for simulating wireless topologies

WT-Tool - A Powerful Tool to Integrate Real Geographic Data in Wireless Research

Wireless Topology Tool (WT-Tool) is an application designed to foster the use of real (or realistic) geographic data in the wireless networking research community. The tool can be used to conduct more realistic, geography based simulations. One of the main objectives is to increase the reproducibility of results. Using this platform, you can load, create, and export realistic network topologies through our map-based interface.

(*) <u>https://wttool.eng.buffalo.edu/</u>