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Abstract—Digital twins have recently emerged as a trans-
formative paradigm in wireless networking, offering promising
avenues to enhance network efficiency and adaptability. By
digitally replicating the physical network, they enable advanced
monitoring, analysis, and optimization—key enablers for next-
generation wireless systems. Although extensive efforts have
been made in modeling and simulating wireless networks, their
accuracy often falls short in practical environments. Real-world
conditions, such as physical obstructions and complex radio
propagation phenomena, are particularly difficult to replicate
without resource-intensive local measurement campaigns. To
address this challenge, we propose a lightweight data-driven
approach to modeling wireless networks. Specifically, we utilize a
simple yet informative Key Performance Indicator—the Packet
Delivery Ratio (PDR)—to train link-specific quality prediction
models. By training the models individually for each link,
we effectively capture network heterogeneity and achieve high
prediction accuracy. Moreover, we introduce a dynamic and
adaptive approach for continuously selecting the most relevant
model for the prediction. Experimental results from a real-world
deployment show that this approach achieves a high prediction
accuracy over both short and mid-term horizons, highlighting
the effectiveness of individualized, adaptive modeling in dynamic
wireless environments.

Index Terms—Digital Twins; Wireless Networks; Machine
Learning; Regression; Data-oriented Modeling.

I. INTRODUCTION

Wireless networks have become an essential part of mod-
ern life, enabling omnipresent connectivity across personal,
industrial, and critical infrastructure systems. From Wi-Fi and
cellular networks to sensor deployments in smart cities, wire-
less technologies underpin a wide range of applications with
different requirements. However, the performance of wire-
less networks is inherently dynamic. Radio links are subject
to variable interference, physical obstructions, and mobility,
leading to asymmetric, bursty, and lossy behaviors [1]. As a
result, traditional static or rule-based management approaches
often fall short in adapting to the fast-changing network
conditions. Modern wireless systems require intelligent, data-
driven solutions capable of reacting to real-time dynamics.

To this end, Digital Twins (DTs) are increasingly being
adopted in wireless networking. A DT is a real-time digital
replica of a physical system, continuously synchronized with
its real-world counterpart. DTs offer powerful capabilities
for system monitoring, configuration, and optimization by
enabling the execution of what-if scenarios and forecasting
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Fig. 1: Architecture of a DT for wireless networking

future Key Performance Indicators (KPI) under different con-
figurations. They have proven particularly effective in other
domains such as Industry 4.0 and are now finding traction in
networking contexts [2].

A major challenge in building effective DTs for wireless
networks lies in the fidelity of the digital replica. Accurate
modeling of the radio environment, especially radio prop-
agation and link quality, is difficult due to the complex-
ity and variability of wireless conditions. Simulation-based
DTs often rely on approximate models (e.g., in ns-3 [3]),
which may struggle to capture the heterogeneity of real-world
wireless environments without significant manual calibration.
More accurate alternatives, such as ray-tracing techniques [4],
offer improved fidelity, but come at the cost of substantial
computational resources. We argue that for DTs to be both
accurate and practical, they should be grounded in data from
real deployments to reflect the true variability of wireless
links, while remaining lightweight enough for scalable use in
dynamic scenarios.

Finally, another key challenge is the heterogeneity of wire-
less networks, where different links can exhibit vastly different
characteristics due to hardware, topology, interference, and
environmental factors. Yet, many existing approaches rely on
holistic or global models that fail to reflect per-link varia-
tion [5]. This limits the precision of the DT as individual
links often exhibit distinct behaviors that such models fail to
capture.



In this work, we focus on the replication aspect of DTs for
wireless networks, which is the core foundation upon which
higher-level functionalities such as optimization, configuration
testing, and predictive maintenance can later be built. Specifi-
cally, we propose an “agnostic” link model that can be adapted
to any wireless network, i.e., regardless of the underlying
communication protocols or traffic types. Our method uses
observed events (e.g., packet receptions) to train lightweight,
individualized models for each link based on the PDR. To
ensure robustness in dynamic environments, we introduce a
dynamic selection mechanism that continuously identifies the
most relevant model for accurate prediction. This link model
can typically be part of the future DT, as illustrated in Figure 1.

The key contributions of this work are as follows:
1) We analyze the characteristics of radio links in a real

network, highlighting the importance of per-link model-
ing;

2) we compare various forecasting techniques to evaluate
their performance in predicting short- and medium-term
behavior (a critical property of the DT);

3) we propose a self-adaptive method that dynamically
selects the best model for each specific link.

II. RELATED WORK

A. Ray-tracing for Network Digital Twins

In the context of wireless networking, DTs can be designed
to model the radio environment with high precision. Signif-
icant recent efforts have been dedicated to ray-tracing-based
approaches for Network DTs, which aim to replicate signal
propagation in complex environments with high fidelity.

For example, NVIDIA Omniverse [6] offers a large-scale
simulation platform for wireless systems, featuring ray-tracing
capabilities to emulate radio wave propagation. Accurately
synchronizing a DT with real-world conditions is particu-
larly challenging and computationally expensive, as it re-
quires full characterization of the physical (PHY) channel.
To achieve realistic replay, detailed knowledge of the channel
transfer function is necessary. A notable approach is taken
by Colosseum [7], which emulates radio propagation using
Software-Defined Radios (SDRs) interconnected via an Field-
Programmable Gate Array (FPGA) fabric. This infrastructure
relies on propagation models that are fine-tuned to match real-
world conditions, necessitating precise and often difficult-to-
obtain measurements from the deployment environment.

While these highly accurate approaches may be suitable for
certain applications, we believe it is also essential to develop
lighter DTs that can operate with less intrusive measurements.

B. Radio Link Quality Modeling

As highlighted in the Introduction, accurately replicating
radio link quality is essential for building reliable DTs. To
achieve this, link quality models play a key role in enabling
predictive capabilities that can support tasks such as resource
allocation. Numerous radio propagation models have been de-
veloped to address specific scenarios such as urban, vehicular,
and tunnel environments [8]. However, these models require

calibration with data from in-situ deployments to achieve real-
istic performance. More synthetic, data-driven models would
be highly beneficial.

Also, wireless links are known to exhibit lossy, asymmet-
ric [9], and bursty [1] behavior. Brun et al. [10] analyzed
multiple testbeds and real-world deployments, showing that
multipath fading is common and leads to time-varying link
quality. Several metrics have been proposed to capture this
variability [11], including the widely used Link Quality In-
dicator (LQI) and Received Signal Strength Indicator (RSSI).
However, both LQI and RSSI are only loosely correlated with
the actual Packet Reception Rate (PRR) [12]. As a result,
measuring the average remains the most accurate method to
directly estimate link quality.

After initially measuring link quality, a DT should rely
on a predictive model. Sindjoung et al. [13] propose a link
classification approach for IEEE 802.15.4 TSCH networks
using traditional machine learning algorithms that combine
RSSI and PDR. Their method is used for rerouting through
better links.

Benadji et al. [14] adopt neural network architec-
tures—including Long Short-Term Memory (LSTM), Gated
Recurrent Unit (GRU), and Convolutional Neural Network
(CNN)—to predict the overall evolution of PDR across the
network. Their method predicts a global PDR, and is therefore
particularly interesting to anticipate SLA violations. Cerpa
et al. [15] compare Naive Bayes, Logistic Regression, and
Artificial Neural Networks to predict packet losses. They
predict the probability that the Packet Delivery Ratio (PDR)
exceeds a given threshold value for the next time window,
based on physical layer indicators (SNR, LQI, and RSSI) of
recent transmissions. However, the SNR value is not reported
systematically by commercial radio chips.

In our previous work [5], we addressed link quality pre-
diction under various MAC configurations in IEEE 802.15.4
networks. Our model can predict KPI Indicators associated
to a configuration even if it has not been evaluated previ-
ously, combining the KPIs for similar configurations. However,
a fully functional DT also requires time-aware predictions.
Finally, Almeida et al. [16] enhance the ns-3 simulator to
construct a DT. The path loss is considered as the sum of
a deterministic path loss (obtained with a ML model) and a
stochastic fast-fading loss (according to well known Rician or
Rayleigh distributions). Unfortunately, the path loss estimation
is still imprecise and the study does not isolate the behavior
of the different link categories.

Most of these studies assume a single, uniform model is ap-
plied across all links. However, given the existence of distinct
categories of links with varying characteristics, we advocate
for the use of per-link trained models to significantly enhance
prediction accuracy. Table I summarizes key characteristics of
existing link quality modeling approaches in the literature and
contrasts them with our proposed contribution.



Work Model Type Granularity Adaptivity Prediction
Horizon

Data Limitation vs. our work

Brun et al. [10] Empirical analysis Per-link × N/A Exp. Descriptive only, no predic-
tion

Sindjoung et al. [13] Traditional ML classifi-
cation

Per-link × / Exp. No dynamic/adaptive se-
lection

Benadji et al. [14] Deep learning (LSTM,
GRU, CNN)

Global × Mid-term Sim. Ignores link variability, no
per-link modeling

Cerpa et al. [15] Traditional ML regres-
sion

Per-link × Short-term Exp. Focus on short-term only

Almeida et al. [16] SVR and XGBoost Global × Mid-term Exp. Single model for all links

Our contribution Lightweight ML mod-
els

Per-link Mid-term Both –

TABLE I: Comparison of related work and our contribution on link quality modeling.
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Fig. 2: Network deployment topology.

III. RADIO LINK CHARACTERIZATION AND LIMITS OF
SIMULATION MODELS

The objective of this section is to present a concrete example
of a wireless network and to thoroughly characterize the
various wireless links within it. In particular, we highlight
a very large heterogeneity of behaviors: simple simulation
models will provide a low accuracy in these conditions.

A. Experimental Setup

We conduct our experiments on the large-scale reproducible
SLICES-FR testbed1, where we deploy a wireless network
consisting of nine nodes at the Grenoble site (see Figure 2).
Each node features an M3-board microcontroller running
firmware based on the Contiki Operating System2. The IoT de-
vices communicate over an IEEE 802.15.4 network using the
6LoWPAN protocol, with each node broadcasting a 30-byte
packet to all other nodes every second. The IEEE 802.15.4
protocol, commonly used in IoT applications, implements the
CSMA/CA mechanism at the MAC layer. The parameters of
our setup are detailed in Table II. It is important to note that
our approach is designed to be generic, without relying on
specific assumptions about the MAC layer, communication
protocol, or deployment characteristics.

The network operated for 24 hours, during which time we
collected time series data and statistics via a serial output

1https://slices-fr.eu/
2https://www.contiki-ng.org/

Parameter Value

Number of nodes 11
Traffic data rate 1 packet per second
Traffic direction Broadcast
Packet size 30 bytes
Operating system Contiki-NG
Communication protocol 802.15.4
MAC Protocol CSMA/CA

TABLE II: Considered parameters for our experimental setup.

connected to the SLICES-FR monitoring infrastructure, focus-
ing on transmission and reception times. Our primary metric
of interest is the PDR, defined as the ratio of successfully
delivered packets to the total number of packets sent. It is
important to note that our analysis treats links as asymmetrical,
meaning the link from node A to node B is considered distinct
from the link from node B to node A.

Each link between nodes is represented as a binary se-
quence, where a received packet is indicated by a 1 and a
lost packet by a 0. Then, we aggregated these sequences to
compute the number of successfully received packets over
specific time intervals, set to T = 50 seconds for this study.
This process generates time series data for each link, showing
the count of correctly received packets in successive 50-second
intervals.

B. Links Heterogeneity

To capture the diversity of links and gain insights into their
distribution across the network, we categorized them into four
classes according to the mean PDR: (i) bad links, which exhibit
a PDR ≤ 20%, (ii) average links, with 20% < PDR ≤ 60%,
(iii) good links with 60% < PDR ≤ 75% and (iv) excellent
links (75% < PDR). Figure 3 presents the mean time series
for each of the four clusters, along with the minimum and
maximum values observed within each cluster. This clearly
highlights the heterogeneity within the data and emphasizes
the distinct characteristics of each cluster.

https://slices-fr.eu/
https://www.contiki-ng.org/
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Fig. 3: Clustered link time series: each subfigure shows the
mean time series of a cluster, with a shaded region from
minimum to maximum.

C. Are Simulations Accurate?

To highlight the limitations of using simulators to replicate
the behavior and performance of real-world networks, we

recreated the network setup in simulation. Cooja [17], a
discrete-event simulator, is well-regarded for its flexibility as
it allows real firmware to be run, effectively mimicking the
behavior of actual wireless devices.

The 9 nodes run the same firmware (Contiki) in the testbed
and in simulation. Cooja models wireless transmissions based
on two user-defined parameters: PTx and PRx. These param-
eters are used to calculate the probability of a packet being
successfully transmitted and received, respectively, provided
the distance between the sender and receiver does not exceed
a predefined threshold. In the testbed, we have 75 non-zero
PDR links.

When a node A transmits a packet, PTx determines whether
the transmission attempt succeeds. If successful, PRx then
determines whether the packet is successfully received by
node B. While this simplified model captures basic wireless
behaviors, it falls short in replicating the nuanced and dynamic
characteristics of real-world wireless networks, as explored in
this study.

To compare the measurements obtained from the real exper-
imental platform with those generated by the simulator, and
to accurately model each link individually, we evaluate the
experiments using a personalized calibration using the average
PDR: this approach calibrates each link individually using
the specific average PDR measured for that link on the real
platform. For each link (a→ b), the transmission probability is
set as P

(a−b)
Tx = Average-PDR(a−b). This simulates a scenario

where each link is calibrated based on its unique real-world
performance.

Figure 4 compares the actual PDR measurements from
the real platform with those obtained from the simulator
under the personalized calibration approach. We showcase a
representative collection of wireless links, selected in different
clusters. Key observations from the figure include:

• Real-world measurements show highly diverse behaviors,
including sudden drops in PDR and consistently low PDR
values throughout the deployment.

• Even calibrating each link with its specific average PDR
is insufficient, as PDR evolves dynamically over time,
influenced by temporal interferences and other environ-
mental factors.

These findings underscore the limitations of simulators like
Cooja in accurately replicating the complex and dynamic
behaviors of real-world wireless networks. They emphasize the
need for adaptive and more sophisticated modeling approaches
to better capture the nuances of such environments.

IV. CAN WE PROVIDE LINK QUALITY PREDICTIONS?
As observed earlier, wireless links within a network exhibit

diverse behaviors. While some links maintain consistently
high performance with minimal variation, others demonstrate
bursty and unpredictable behavior. Consequently, using a sin-
gle model to replicate all wireless links often yields suboptimal
results. Additionally, applying computationally intensive mod-
els to links with straightforward, predictable behavior wastes
resources.
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Fig. 4: Wireless links time series for three links from different
clusters, where i j represents the link from node i to node j,
observed in real experiments and in the personalized simulator
calibration.

A. Packet Delivery Ratio as Time Series

The objective of the DT is to predict, or forecast,
the future values of a given performance metric for each
link—specifically the PDR in our case. This task can be
framed as a time series forecasting problem, which can be
tackled using e.g., regression or ARIMA models.

We analyze time series of PDR measurements, denoted as
[x1, x2, . . . , xn]. During each time interval T , we calculate
for each link the ratio of packets correctly received by the
receiver. In our case, xi represents the number of correctly
received packets during the ith interval (T = 50s by default,
as illustrated in Table III). We assume that the characteristics
of a link are stationary during a time interval T , and that we

collect enough measurements to reflect the actual PDR of the
link. A low T value means a higher reactivity, while a high
T value reflects a more accurate estimator. It is worth noting
that while further optimization of this hyperparameter could
potentially improve performance, it falls outside the scope of
this paper.

To apply regression models, we preprocess the data using
a sliding window technique. The DT mirrors the actual per-
formance of the corresponding link: at any instant, it uses
the last w values to make its predictions. By considering
sequences in the models, we capture temporal patterns such
as trends and seasonality, enhancing predictive accuracy for
future PDR values. By transforming the time series problem
into a supervised learning task, we define the regression model
as follows:

xi = f(xi−w, . . . , xi−1)

where f represents the predictive model.

B. Model training

We can apply regression models for forecasting at any
instant to make predictions. These models are useful for their
simplicity and efficiency in predicting outcomes based on
input features. In the context of time series forecasting, these
models are designed to predict a target variable xw using
one or more independent variables from previous time points
(x1, x2, . . . , xw). In our study, we consider the following
lightweight models:

• Support Vector Regression: SVR aims to find a hyper-
plane in a high-dimensional feature space that has the
maximum margin from the training data points [18].

• Gradient Boosting: it builds a set of prediction models in
a sequential manner. It combines these models to create a
more through the reduction from each model of the errors
made by the previous models [19].

• Decision Trees: it splits the data into subsets based on
the value of input features, creating a tree-like structure
where each node represents a feature, each branch rep-
resents a decision rule, and each leaf node represents an
outcome [20].

• AdaBoost: AdaBoost (Adaptive Boosting) works by
combining multiple weak learners, typically decision
trees to form a strong classifier [21].

• Extra Trees: it builds multiple decision trees using
random subsets of the training data and features. It further
randomizes the splitting process by considering random
thresholds for each feature instead of searching for the
best split point [22].

Note here that we exclude neural network models due to
their high complexity, and ARIMA models because they are
better suited for stationary data. During the training phase,
we aim to identify the best regression model and the optimal
window size for each link. To achieve this, we allocate 33%
of the data for training (approx. eight hours), representing the
network deployment phase, to construct the models. Then, we



select the models giving the best predictions on that same
training data, along with its best window size w. The choice
of window size significantly impacts model performance: a
small w may fail to capture long-term dependencies, leading
to underfitting, while a large w can introduce unnecessary
complexity and redundancy, increasing the risk of overfitting.

C. Continuous Predictions

We describe here the prediction process during the testing
phase using a given regression model. The objective is to
predict the evolution of the PDR for a given number of
intervals. More precisely, we predict the PDR values for the
next p time intervals recursively from the last observations, as
follows:

At the interval i, we first predict the next value with the last
w values. Then, we proceed iteratively: we use the predicted
value to make the next prediction. We keep a fixed sequence
with w elements and consequently remove the first value of
the previous sequence. Thus, after predicting x̂(i+1), the next
prediction is made using the inputs (xi−w+1, . . . , xi, x̂(i+1)),
treating x̂(i+1) as an observed value. This process is repeated
p times to generate a sequence of p predictions.

Let us call the set of predictions according to the different
prediction steps (up to p) at the i-th interval X̂(i). The matrix
X̂(i) represents the predicted values at different prediction
steps. At each instant i, the model predicts up to p future
values, forming a diagonal structure. The prediction matrix is
structured as follows:

X̂(i) =


x̂1,1 x̂1,2 · · · x̂1,p . . . x̂1,i

x̂2,2 · · · x̂2,p . . . x̂2,i

. . .
...

...
x̂p,p . . . x̂p,i


where the elements in the matrix correspond to: (i) rows:

the prediction step (how far ahead the model predicts) and
(ii) columns: the time interval i. At each time interval i,
the model takes the last w values from the real sequence
(or previously predicted values) and generates a sequence of
predictions recursively.

Considering that the last observed value is xi, this process
can be expressed as:

x̂m,n = f([vm−w,n−w, . . . , xm−1,n−1]); (1)

where m ≤ p, n ∈ N+, and:

vk,j =

{
xk, if k ≤ i

x̂k,j , otherwise
(2)

Figure 5 illustrates this process, showing how the X̂(i)
matrix is constructed, with an example where w = 3 and
p = 4. In practice, it is preferable to have p ≤ w to prevent
the model from predicting more values than the historical data
it relies on, thereby reducing the risk of divergence. However,
this example is presented solely for illustrative purposes.
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Fig. 5: Prediction matrix construction. We consider the exam-
ple where w = 3 and p = 4. At each time step, the model
utilizes the most recent observations along with previously
predicted values (highlighted in red) to generate the next pre-
diction. This process forms a sliding window that progressively
shifts from real observations to the diagonal of the prediction
matrix. Once a new observation becomes available, the process
repeats, constructing a new diagonal, and continues iteratively.

As new data points arrive from the network, the model is
updated dynamically—when a new value xi+1 is received at
the i + 1-th interval, the model is retrained using the most
recent w values [xi−w, . . . , xi] as input and xi+1 as the target.
This process continues iteratively throughout the deployment,
ensuring that the model adapts to evolving network conditions.

D. Prediction strategies

We consider here the two following variants for the predic-
tions during the deployment:

1) Variant 1: Fixed model: We consider that each link
executes a specific fixed model. Our hypothesis is that the
model achieving the best performance during training should
also deliver satisfactory performance during deployment. Note
that this assumes a relatively stable link quality.

This approach is described in Algorithm 1, and works as
follows:

1) We store the new observation in a time series (line 3);
2) We use the new observation to refit the model: we can

compute the error between this new observation and the
corresponding predictions we made in the past (line 5);

3) We can also trigger a prediction: we recursively use our
model to make p predictions. All the predictions are
stored in x̂i,k (lines 6-11)

Figure 6 illustrates the architecture of this approach, where
each link is represented by a single model used for predictions
during deployment.
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Algorithm 1: Fixed Model
Input: w: Sliding window size
Input: p: Prediction step
Input: model
Output: At any instant, the next predictions for the

PDR values x̂(∗)
1 i← 0
2 while a new observation xi is measured do

/* Store the new observation */
3 x← x ∪ {xi}

/* Refit the model comparing
prediction and observation */

4 if i ≥ w + 1 then
5 model.fit[(xi−w, . . . , xi−1), xi]

/* Predict the next p values
iteratively */

6 if i ≥ w then
7 xinput ← (xi−w, . . . , xi)
8 for k ∈ [1, p] do
9 x̂i,k ← model.predict(xinput)

/* Remove the first value of
the sequence and insert the
predicted value */

10 xinput ← xinput \ {first element}
11 xinput = xinput ∪ {x̂i,k}

12 i← i+ 1

Output: X̂(i)

2) Variant 2: Adaptive Model: The previous approach
presents limited accuracy for bursty links: the best model is
selected and fixed for a specific link.

We propose here a self-adaptive approach for model selec-
tion, where the best-performing model is chosen dynamically

Algorithm 2: Adaptive Model
Input: w: Sliding window size
Input: p: Prediction step
Input: q: History window interval
Input: models
Input: BestModel
Output: At any instant i, the next predictions for the

PDR values from the BestModel:
x̂BestModel(∗)

1 i← 0
2 while a new observation xi is measured do

/* Store the new observation */
3 x← x ∪ {xi}

/* Enough observations */
4 if i ≥ w then
5 for model in models do

/* Refit models + Predictions
*/

6 model.fit((xi−w, . . . , xi−1), xi)

7 X̂model(i)← Algorithm 1(w, p, model)

/* Best models from prediction
error */

8 for model in models do
9 errormodel(i) following Equation 3

10 BestModel following Equation 4

11 i← i+ 1

at each (R = 1) iterations. Thus, we can here change the
parameters of the model and the model itself. For this purpose,
we execute in parallel all the different models. Then, we select
continuously, at each time interval, the best model, according
to the last predictions.

More specifically, at each interval, we compute the pre-



Parameter Signifcation Value

T Time interval for the com-
putation of number of re-
ceived packets

50 seconds

w Sliding window interval w ∈ {3, 5, 10, 15, 20}
p Prediction step p = 20 intervals
q History window interval q = 5 intervals
R Refit frequency R = 1 interval

TABLE III: Signification and default value for the different
parameters.

diction error of all models over the last q predictions. This
enables us to retain only the model that has demonstrated
the best recent performance. The underlying hypothesis is
that the model performing best for the latest predictions
should continue to yield satisfactory results in the subsequent
predictions, up to a certain point.

To calculate the error of a model up to the i-th interval, for
each step j from 1 to p, the predicted values [xi−q,j , . . . , xi,j ]
are compared against the actual values to compute step-wise
errors for the last q intervals, where i is the current interval
index. The overall prediction error up to the i-th interval is
then calculated as the sum of Mean Squared Errors (MSE)
over the last q intervals for the p different steps:

errormodel (i) =
p∑

j=1

1

q

i∑
k=i−q

(
xk − x̂model

k,j

)22

(3)

The model with the lowest error is selected as the new
BestModel for the next R intervals:

BestModel = argmin
m∈models

(errorm) (4)

As a result, predictions over the network’s lifecycle may come
from different models, ensuring that the system does not rely
on a single model that may become inefficient over time.

Algorithm 2 proceeds in detail as follows:
1) The first part of the process is executed, once per model

and per link to make the predictions, as previously (lines
6-7);

2) We compute the average error achieved with each model
for the last intervals (lines 8-9);

3) We select for the next predictions the best model, i.e.,
those minimizing the recent error (line 10).

V. PERFORMANCE EVALUATION & VALIDATION

We evaluated our approach using the network described in
Subsection III-A to validate it. To simulate the behavior of a
real DT, we split the collected PDR measurements into two
datasets: 33% (approximately eight hours of deployment) for
model training and the remaining 66% (roughly sixteen hours)
for testing. The testing dataset represents the projected future
data that a real network would transmit to its DT.

For each link, we recorded the number of correctly received
packets and generated time series representing the count of

successfully received packets within successive T = 50-
second intervals. To assess model performance, we used the
MSE metric which quantifies the deviation between predicted
and actual values during testing. The overall MSE for each
model was determined by averaging the MSE values across
all network links.

To sharpen our analysis, we varied the prediction horizon
from 1 to 20 steps, testing each model’s ability to forecast
packet reception from 50 to 1000 seconds ahead. In this
way, we assessed the models’ effectiveness in both short- and
medium-term forecasting.

A. One step prediction Error

Figure 7 compares the predictions achieved with the adap-
tive technique with the measurements observed for the con-
sidered links in Section III-C, with p = 1, which means
that the models are used for one prediction only and are
recalibrated at each interval. To facilitate interpretation, we
evaluate performance using the Mean Absolute Error (MAE),
noting that similar results were observed with the MSE metric.
The results demonstrate that adaptive regression effectively
captures the complexities of the experimental data across
different link types, including highly dynamic links such as
m3-133˙m3-163 and m3-166˙m3-163.

B. Adaptive Model vs Fixed Model

We compare here the two approaches described in sec-
tion IV-C:
fixed selects the best model at the end of the training phase.

It remains fixed for the rest of the time;
adaptive selects the best model at each iteration (R = 1), us-

ing the most recent q predictions (and their corresponding
error).

Notably, both approaches use a separate model for each link,
trained solely on observations from that specific link.

We identified in the preliminary section three distinct cate-
gories among the network links (cf. Figure 3), excluding the
bad links: (1) excellent wireless links, (2) good performing
links, and (3) average performing links. Therefore, we evalu-
ated the behavior of fixed and adaptive approaches separately
for the different link categories. We omit to consider the bad
quality links due to their constant low PDR, which makes it
easy to provide accurate predictions.

As Figure 8 shows, across all classes, the adaptive method
consistently outperforms the single-model approach at every
prediction step, demonstrating its ability to handle dynamic
link variations and enhance prediction accuracy. Notably, the
prediction error remains remarkably low at step 1, highlighting
the method’s effectiveness in short-term predictions, with
errors increasing gradually as the prediction horizon extends.

For average links, the method performs well in shorter
prediction steps, maintaining errors between 6% and 8%. This
is likely due to minimal variation over short intervals, allowing
the model to retain high accuracy. As the prediction step
increases, performance declines, but errors remain below 12%,
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Fig. 7: Wireless links time series for three links from different
clusters: Real Measurements vs. Adaptive Regression (p = 1)

demonstrating the method’s resilience in sustaining reasonable
accuracy over longer horizons.

For good links, both approaches perform even better. The
adaptive method remains robust, particularly for short-term
predictions, with errors around 6%. Even as the prediction
step increases, errors stay within a manageable range, not
exceeding 9%. This suggests the method effectively adapts
to dynamic conditions while maintaining reliability.

For excellent links, performance improves further, with
errors generally staying below 6%, even for higher prediction
steps.

Overall, the method’s robustness across all link categories
highlights its versatility and potential for broader application
in diverse network conditions. While the adaptive approach
incurs higher computational costs than a single regression
model, the simplicity and efficiency of the underlying models
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Fig. 8: Prediction error of the adaptive method evolution on
the different clusters.

ensure that continual learning remains feasible. As a result,
resource consumption remains well within acceptable limits
for network management.

- Prediction time: In Table IV, we present the approximate
time required, at a given instant and for a given link, to refit
the model(s) and perform a prediction for both approaches,
across the four cluster categories (Bad, Average, Good, Excel-
lent), using a personal computer equipped with an Apple M2
chip. Each row reports the minimum, median, and maximum
prediction times. From these results, two main conclusions
can be drawn: (i) the prediction times for both approaches
are low, demonstrating their capability to forecast the next
T = 50s of transmissions in under one second—thus providing
sufficient time for network-level decision making; and (ii) the
adaptive model approach is clearly more time-consuming than
the fixed (best) model, as it relies on multiple models (six



in this case) during both training and prediction phases. It is
also worth noting that the high versatility observed in the Bad
cluster is due to the heterogeneity of the links themselves:
while some of them are stable and can be accurately modeled
by decision trees, others are much more dynamic and require
more time-consuming models such as Extra trees. Following
this, assigning a distinct model to each link may become
computationally expensive in large-scale networks, especially
under high traffic conditions. One potential solution is to
cluster links exhibiting similar behavior and use a shared
model for each group, thereby reducing the computational
overhead while preserving modeling accuracy.

TABLE IV: Prediction times statistics per cluster and model
for the fixed and adaptive approaches.

Cluster Approach Min (s) Median (s) Max (s)

Bad Adaptive 0.1705 0.3065 0.4768
Fixed 0.0011 0.0810 0.1379

Average Adaptive 0.5039 0.5562 0.5803
Fixed 0.0017 0.0019 0.0031

Excellent Adaptive 0.5229 0.5577 0.5953
Fixed 0.0019 0.0026 0.0033

Good Adaptive 0.5264 0.5640 0.6006
Fixed 0.0017 0.0023 0.0029

VI. CONCLUSION & PERSPECTIVES

In this paper, we introduced a self-adaptive approach as the
foundation of a DT for wireless networks, allowing an accurate
and lightweight replication. Our method redefines wireless
network modeling by constructing a collection of DTs, each
specifically tailored to represent an individual radio link. This
approach facilitates the dynamic, real-time selection of the
best model for each link, using the most recent observations,
through a rigorous comparison process. Our model presents a
key adaptability to the diverse and fluctuating conditions of
wireless networks, as our performance evaluation highlights.
To promote transparency, reproducibility, and further research,
we have made our dataset, implementation and documentation
publicly and completely available to the community3.

While current evaluation is limited to a small-scale testbed,
it provides a necessary proof of concept. Future work will
focus on large-scale experiments to evaluate scalability and
robustness. Also, we plan to extend our approach to include
additional metrics, such as latency and the number of consec-
utively lost packets, which are crucial indicators of network
quality for critical applications [23]. Another priority will be
enhancing the generalization capabilities of the DT to predict
the performance of unseen links, considering environmental
factors like the distance between the sender and receiver
or the specific deployment area. Additionally, implementing
a bidirectional communication channel between the physical

3Code sharing: To ensure reproducibility, we provide the source
code, datasets and documentation at the following link: https://github.com/
SamirSim/Wireless-Link-Quality-Prediction

network and its digital counterpart remains an important open
challenge. Recent work [24] has demonstrated the feasibility of
such links with latency guarantees around 14 ms, making this a
promising direction for future integration. These advancements
will contribute to a comprehensive DT that not only replicates
the wireless network with high fidelity but also supports
reliable what-if scenario analyses.
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