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ABSTRACT
With the tremendous ascension of the Internet of Things over the
recent years, ns-3 has consolidated its position in terms of popular-
ity among the research community. Indeed, it has become one of
the most used open-source network simulators, with an important
community of users and contributors. However, the growth of this
community is constrained by the networking and programming
skills required to use ns-3. This reduces the ns-3 traction within the
industrial community, since many IoT specialists lack these skills.
In this paper, we present SIFRAN, a no-code framework for IoT
networks simulation using ns-3. The main objective of SIFRAN is
to extend the use of ns-3 to a community of non-programmers by
making them able to benefit from its features without writing a
single line of code, and to encourage network experts to contribute
to this effort. We show how the framework can be used via a simple
web interface for simulating Wi-Fi- and LoRaWAN-based IoT se-
tups, and how the programmers’ community of ns-3 can contribute
to the framework by adding more IoT network technologies.
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1 INTRODUCTION
The Internet of Things, or IoT, defined as the convergence of the
digital and physical worlds, has become a fundamental trend under-
lying the digital transformation of enterprises and is becoming the
beating heart of their operations. A wide range of connectivity op-
tions are now offered to IoT users. New low-power communication
technologies like LoRaWAN or Sigfox have emerged. Remarkable
advances have been made in network technology and protocols to
serve an increasing number of IoT use cases. These technologies
differ from each other, whether in terms of inherent parameters
or in terms of their targeted applications. The variety of options
can be seen as an opportunity to widen the range of possible IoT
use cases. However, they often make it hard for researchers and
industrial companies to do the right technology choice and config-
uration setting, yet these are crucial decisions. Indeed, under- or
over-sizing a network has to be avoided to ensure profitability. A
good trade-off between cost and QoS has to be found. To address
this problem, simulation appears as a key enabler for the IoT net-
work technology selection. Indeed, it can provide good insights
about the performance of a technology at low cost since no real IoT
material is needed.

The network simulator 3, or commonly called ns-3, is a discrete-
event simulator that has been developed to provide an open and
extensible network simulation platform for networking research
and education. Due to its highly available documentation and the
important set of network technologies it supports, it has become
one of the most used simulators in the network community. How-
ever, ns-3 is targeting programmers rather than IoT architects and
solution vendors. This is due to the fact that it requires network
expertise and C++ programming skills, while industrial teams gen-
erally lack these combined capabilities. Therefore, having a no-code
approach for using ns-3 would be an efficient way of reaching an
important community of IoT professionals and make them able to
benefit from ns-3 features. No-code [6] is becoming very popular in
IoT, as it empowers manufacturers and operation managers to pro-
gram their IoT applications while reducing the time and expertise
needed. A no-code approach implies a cautious abstraction work to
hide the technical details while enabling useful projections. In the
case on network simulation, the abstraction also requires to allow



the integration of a large diversity of network technologies in the
same framework without losing in precision.

For that reason, and in order to extend the use of ns-3 to a
community of non-programmers, we propose, in this work, a no-
code framework for users to set up and run ns-3 IoT networks
simulations without writing a single script. We believe it can, on
the one hand, expand the community of users and accelerate their
IoT journey, and, encourage contributions to ns-3 towards further
inclusion of more IoT technologies for industrial purposes on the
other. The contributions of this work are the following:

• An intuitive web application to setup and run simulations
by selecting and tuning scenario parameters.

• A set of relevant KPIs (Key Performance Indicators) for IoT
simulations and their automatic calculation.

• A set of generic templates of ns-3 script for IoT use cases, and
their implementation for Wi-Fi and LoRaWAN technologies,
and guidelines on how they can be modified for other IoT
networks.

The remainder of this paper is organized as follows: Related works
are discussed in Section 2. The problem formulation is established
in Section 3, and an overview of our framework is given in Section 4.
Section 5 first describes the developed templates, and then provides
some integration guidelines for further contributions. A discussion
is provided in Section 6, while the conclusion and the future works
are given in Section 7.

2 RELATEDWORKS
No-code [6] initiative has always attracted an important interest
in the research and development community. The reason behind
that is that it encourages contributions even from people lacking
programming skills. For instance in the software development field,
due to the increase of workers demands of mobile applications
which has grown faster than what IT can deliver, [1] propose an
environment where non-developers who are in charge in business
development can develop apps andwebs for their work. In [11], they
propose a low-code platform for automating business processes in
manufacturing. indeed, they state that the use of low-code can rep-
resent a significant step forward in creating business applications,
especially with the a rapidly growing number of companies.

In IoT, No-code is becoming very popular, as it empowers manu-
facturers and operation managers to program their IoT applications
while reducing the time and expertise needed. Some initiative are
therefore going into that direction. For example, [9] proposes an
end-to-end low-code mechanism for managing the relationship
between heterogeneous hardware sensors and IoT platform. The
objective of that mechanism is to overcome the problematic of
lacking programming experience which burdens the widespread
adoption of IoT. On the other hand, [6] affirms that IoT requires
system developers to have a deep understanding of the individual
devices’ functionalities to achieve a successful integration. Thus,
they propose a method to create virtual instances of IoT devices
based on their technical description to act the real device, usable
without programming experience. This can also be seen as a form
of simulation. In addition to that, several no-code tools exist for

IoT development (Node-RED1, AtmosphericIoT2, Simplifier3, etc.)
according to [5].

SIFRAN differs from these works in the fact that it uses simula-
tion through an already well-established tool in IoT (ns-3), with the
purpose of making the non-programmers community able to run
IoT simulations and gather indicators of performance from them in
a very easy way.

3 PROBLEM FORMULATION
The objective of this section is to propose a comprehensible way
of defining an IoT scenario and the targeted output metrics that a
user wants to gather using simulation. To do so, we need to clearly
state what must be taken into consideration in the simulator when
running an IoT network simulation: the input parameters that de-
fine a scenario, and the output metrics that need to be gathered for
evaluating the performance. Both theses will then be integrated into
an ns-3 script that we call template. To illustrate this, we consider
the case wherein an IoT solution provider, offering a smart water
management service based on LoRaWAN, needs to deploy a private
network for a customer. One of the main questions that could be
asked in this case is how robust will the network be, considering
the radio parameters and the topology (number of sensors, their
location, etc.). In other words, the IoT company has to know how
much percentage of packets will successfully be transmitted, with-
out omitting the fact that the minimum required packet delivery
rate for such application is typically around 90% [3]. A way of an-
swering the question would be to deploy the network and evaluate
its performance. However, knowing that one LoRaWAN gateway
can handle at least dozens of sensors, deploying them to answer
the question can turn out to be very costly. Thus, using simula-
tion instead would make it possible to answer that question while
lowering costs (such an application has been studied in [7] using
ns-3). As we can see, two aspects need to be defined for running
such IoT scenario simulation: The scenario description, in terms
of traffic and topology (e.g., the number, location and data rate of
smart water sensors in the previous example), and the KPIs that
need to be analyzed and will give insights to answer the question
(e.g., the packet delivery ratio). We describe these two aspects in
the following.

3.1 Scenario Description
A scenario is defined by a list of parameters representing the net-
work topology, the considered IoT network technology and the
traffic specifications. They can be divided as follows: (1) the num-
ber of end-devices and their location, (2) the number of gateways
and their location, (3) the IoT network technology defined by its
physical and mac layers, (4) the low-level parameters related to the
radio channel and the propagation model, the frequency and band-
width of the radio channel and (5) the traffic type and workload
(defined by the packet size and the inter-packets period).

The IoT traffic types can be classified according to (i) their di-
rection: upstream (from end-devices to gateways or the cloud) or
downstream (from the cloud or gateways to end-devices) and (ii)
their profile: periodic or stochastic. We call periodic the traffic with
1htttps://nodered.org/
2https://atmosphericiot.com/
3https://simplifier.io/en/



a fixed data rate, while the traffic with a variable rate is referred to
as stochastic. Although some applications have bidirectional traffic,
the majority of IoT applications have upstream traffic. Figure 1 de-
picts a classical IoT system architecture where the end-devices can
either be sensors or actuators, depending on the traffic direction,
upstream or downstream respectively.

Figure 1: Classical High-Level Overview of an IoT Architec-
ture

3.2 KPIs
We propose to gather five metrics, which together provide a fair
representation of the performance of an IoT network technology
for a given scenario. These parameters are: (i) packet throughput,
(ii) packet latency, (iii) packet delivery, (iv) energy consumption
and (v) battery lifetime.

Packet throughput, packet latency and packet delivery are com-
mon performance parameters in network performance evaluation.
Packet throughput represents the data rate delivered to each IoT
device or gateway. Packet latency is the time a packet takes to
transit from its source to its destination. Packet delivery is the ratio
(percentage) of successfully received out of all the packets sent.

Energy is extremely important in the IoT industry where end-
devices are often equipped with a battery, and thus have a limited
power supply. Energy consumption represents the amount of en-
ergy consumed during a period of time. It can be measured for the
overall network or on each IoT end-device, in joules. The battery
lifetime gives an indication on the IoT device’s autonomy without
recharging its battery.

4 FRAMEWORK OVERVIEW
In this section, we present our no-code simulation framework. We
begin by describing its architecture, then we show how to use it
through a web platform by providing an example of application.

4.1 Architecture
The architecture of our framework (Figure 2) consists on an ns-3
environment where the simulations are executed, a web platform
which serves as a user interface for entering scenario parameters
and displaying KPIs, and a database to store both scenarios and
KPIs. We describe each component in what follows:

• Web platform: It is used to enter the scenario parameters
via a form, specific to each scenario traffic type and IoT
technology. The form contains a complete list of the traf-
fic related parameters such as the packet size, the distance

Figure 2: Framework Architecture

between gateways and end-devices, the data rate, etc. and
low-parameters such as channel bandwidth, transmitting
power, etc. A process of validation of the entered values, in
terms of data ranges and types, is done before moving to the
simulation step. The web platform is also used to display the
list of KPIs returned from ns-3 after the end of the simula-
tion. The web application has been developed using Flask
[4], which is a Python-based web development framework.

• ns-3: Once the parameters have been entered by the user and
validated by the engine, they are passed from the webapp on
to ns-3 (which can be hosted in a virtual machine) through
a command line. Depending on the chosen IoT technology,
a template will be executed with the passed input parame-
ters. Once the simulation is over, the KPIs returned by the
template are passed back to the web platform, to finally be
displayed through the user interface to the user. The ver-
sion of ns-3 which is used in the current SIFRAN software is
ns-3.33.

• Database: As users may need to get access to their previ-
ous simulations, we store both scenario parameters and the
resulting KPIs in a database. Note that users have to create
an account on the web platform beforehand if they want to
store their simulations and KPIs and have access to them.
We have opted to a NoSQL database using MongoDB [2],
which is a document-oriented database program.

4.2 Usage
We illustrate in the following section the usage of the platform.
From the homepage, users have the possibility to create an account
through the "Register" button, which will give them access to their
previous simulations. After that, they can directly fill a new IoT
scenario form, either by assigning values to each parameter, or by
selecting a preset which holds a set of predefined ones. As said
before, all the parameter values are validated in terms of data type
and range before the form is submitted. Once the form is correctly
filled, the input parameters are sent to the ns-3 environment to be
executed. The results of the simulation (KPIs) are calculated at that
level before being sent back to the platform, which finally displays



them. An example of a scenario form and simulation results is
shown in Figure 3.

5 TEMPLATE DESCRIPTION AND
INTEGRATION GUIDELINES

In this section, we show how to implement a template for simulating
an IoT network scenario, then we give some integration guidelines
on how to contribute to this framework for other IoT network
technologies.

5.1 Template Description
We call a template the translation of an IoT scenario in the ns-3
environment language. It consists of C++ code globally working
as follows: i) take input parameters which define the scenario, ii)
create the corresponding nodes and traffic, iii) calculate the KPIs
obtained from the simulation.

We considered two IoT technologies in our templates: Wi-Fi
and LoRaWAN. The Wi-Fi stack is completely implemented in the
official release of ns-3. Even though different Wi-Fi amendments
are available, we focused on the 802.11ac and 802.11ax amendments,
as they are the most recent ones.

Regarding LoRaWAN, its stack is not implemented in the official
release of ns-3. However, a link to a public LoRaWAN module [8] is
provided in the official website of NSNAM. The steps for installing
this module are provided in the link.

Even if we implemented one template per IoT technology, the
structure of both is almost identical. We describe bellow the tem-
plate implemented for Wi-Fi technology, by giving screenshots of
code:

(1) Input parameters definition: All the scenario parameters
mentioned in Section 3 are set here. They take as values
the parameters filled by users through the scenario forms
shown in the previous section. They include both traffic and
low-level parameters. Clearly, the considered parameters
will most likely differ depending on the implemented IoT
technology.
/* Input parameters definition */
// Simulation time in seconds
double simulationTime = 10;
// Number of end-devices
uint32_t nWifi = 10;
std::string trafficDirection = "upstream";
// Payload size in bytes
uint32_t payloadSize = 1024;
// Packet period in seconds
std::string period = "1";
// Distance between AP and end-devices in meters
double distance = 1.0;
// Delay propagation model
std::string propDelay =

"ConstantSpeedPropagationDelayModel";
// Loss propagation model
std::string propLoss = "LogDistancePropagationLossModel";
// Channel bandwidth in MHz
int channelWidth = 80;
// Indicates whether Short Guard Interval is enabled or

not
int sgi = 0;
// Allow or not the packet agregation
bool agregation = false;
// Modulation and Coding Scheme
uint32_t MCS = 0;
// Transmitting power in dBm
uint32_t txPower = 9;
// Number of spatial streams
int spatialStreams = 1;
// Tx current draw in mA

double txCurrent = 107;
// Rx current draw in mA
double rxCurrent = 40;
// CCA_Busy current draw in mA
double ccaBusyCurrent = 1;
// Idle current draw in mA
double idleCurrent = 1;

Listing 1: Input Parameters Definition

(2) Nodes placement: This part of code creates all the nodes
(end-devices and gateways) using the NodeContainer
object, and places them in three dimensional space, using
the ConstantPositionMobilityModel object.
/* Positioning Nodes */
for (uint32_t i = 0; i < nWifi; i++) {

positionDevices->Add (Vector (distance, 0.0, 0.0));
}

mobility.SetPositionAllocator (positionDevices);
mobility.SetMobilityModel

("ns3::ConstantPositionMobilityModel");
mobility.Install (wifiStaNodes);

Ptr<ListPositionAllocator> positionAp =
CreateObject<ListPositionAllocator> ();

positionAp->Add (Vector (0.0, 0.0, 0.0));
mobility.SetPositionAllocator (positionAp);
mobility.SetMobilityModel

("ns3::ConstantPositionMobilityModel");
mobility.Install (wifiApNode);

Listing 2: Nodes Creation & Placement

(3) Layers configuration: The technology is defined here by
setting theYansWifiPhyHelper,WifiMacHelper and
WifiHelper objects as the physical, mac and network lay-
ers for Wi-Fi nodes. For LoRaWAN, the LoraPhyHelper,
LorawanMacHelper and LoraHelper objects are used
for the physical, mac and network layers. The Wi-Fi amend-
ment is also specified here with the SetStandard ()
method.
/* Layers installation */
YansWifiPhyHelper phy;
phy.SetChannel (channel.Create ());

WifiMacHelper mac;
WifiHelper wifi;
wifi.SetStandard (WIFI_STANDARD_80211ac);

std::ostringstream oss;
oss << "VhtMcs" << MCS;
wifi.SetRemoteStationManager

("ns3::ConstantRateWifiManager", "DataMode",
StringValue (oss.str ()), "ControlMode",
StringValue (oss.str ()));

Ssid ssid = Ssid ("ns3-80211ac");

// Installing phy & mac layers on the end-devices
mac.SetType ("ns3::StaWifiMac", "Ssid", SsidValue (ssid));
NetDeviceContainer staDevices;
staDevices = wifi.Install (phy, mac, wifiStaNodes);

// Installing phy & mac layers on the AP
mac.SetType ("ns3::ApWifiMac", "EnableBeaconJitter",

BooleanValue (false), "Ssid", SsidValue (ssid));
NetDeviceContainer apDevice;
apDevice = wifi.Install (phy, mac, wifiApNode);

Listing 3: Layers Configuration

(4) Low-level parameters configuration: The low-level pa-
rameters which have been declared on Listing 1 such as the
short guard interval, the bandwidth, the spreading factor for
LoRaWAN, etc. are instantiated and set at the nodes level
here.



Figure 3: Application Homepage

/* Low-level parameters configuration */
// Set channel width
Config::Set

("/NodeList/*/DeviceList/*/$ns3::WifiNetDevice/Phy/
ChannelWidth", UintegerValue (channelWidth));

// Set guard interval
Config::Set

("/NodeList/*/DeviceList/*/$ns3::WifiNetDevice/
HtConfiguration/ShortGuardIntervalSupported",

BooleanValue (sgi));

// Set txPower in the end-devices
for (uint32_t index = 0; index < nWifi; ++index) {

Ptr<WifiPhy> phy_tx = dynamic_cast<WifiNetDevice*>
(GetPointer ( (staDevices.Get(index))))->GetPhy();

phy_tx->SetTxPowerEnd(txPower);
phy_tx->SetTxPowerStart(txPower);

}

// Set txPower in the AP
Ptr<WifiPhy> phy_tx = dynamic_cast<WifiNetDevice*>(

GetPointer((apDevice.Get(0))))->GetPhy();
phy_tx->SetTxPowerEnd(txPower);
phy_tx->SetTxPowerStart(txPower);

Listing 4: Low-Level Parameters

(5) IP address configuration: In case the IP addresses are sup-
ported in the nodes (not supported in LoRaWAN), we con-
figure them in this part using the Ipv4AddressHelper,
in order to make the nodes accessible to each other.

(6) Application traffic specification: This part is where the
traffic definition is made. Depending on the traffic type, appli-
cations are defined and installed in the nodes with fixing the
destination address. We detail this process in what follows:
• Periodic: For simulating a periodic traffic, we install the
UdpClient and UdpSocket objects in the sender and
the receiver nodes respectively. The needed parameters

for the UdpClient object are the packet period and the
packet size, which are specified by the user. The implemen-
tation of such a traffic is given below. It is worth noting that
we consider UDP as a transport protocol because it is more
suited for IoT applica tion than TCP (less energy consump-
tion). For LoRaWAN, the PeriodicSenderHelper
object is used with setting the period and the packet
size with the SetPeriod () and SetPacketSize
() methods respectively. Since LoRaWAN does not allow
communications with big data rates, we can only simulate
periodic traffics with relatively low data rates.

• Constant Bit Rate: The difference between this traffic
and the previous one is that the parameter which is speci-
fied is the data rate (in Mbps or bps) instead of the packet
period. In some cases, it may be simpler for the end user
to express the application needs in terms of data rate than
the packet period. The objects used in this case are the
OnOff and UdpSocket. We need to specify in this case
the application data rate (in Megabits per second) which
is a parameter of the OnOff object.

• Variable Bit Rate: For this kind of traffic, since packets
can have different sizes and periods, we generate them
using random variables (𝑋 for the packet size and 𝑌 for
the packet period) following Normal laws with mean and
variance defined by user. Thus, we use in this case a func-
tion which takes as a parameter a Socket object, and
which schedules for every realization of 𝑋 a sending of a
packet which size is a realization 𝑌 .

/* Setting traffic applications */



ApplicationContainer sourceApplications, sinkApplications;
uint32_t portNumber = 11;
double min = 0.0;
double max = 0.5;
double periodSeconds = std::stof(period)
if (trafficDirection == "upstream") {

auto ipv4 = wifiApNode.Get(0)->GetObject<Ipv4> ();
const auto address = ipv4->GetAddress (10).GetLocal

();
InetSocketAddress sinkSocket (addressportNumber);
PacketSinkHelper

packetSinkHelpe("ns3::UdpSocketFactory",
sinkSocket);

sinkApplications.Ad(packetSinkHelper.Install
(wifiApNode.Get(0)));

for (uint32_t index = 0; index < nWifi; ++index) {
if (agregation == false) {
// Disable A-MPDU & A-MSDU in ea station
Ptr<NetDevice> dev = wifiStaNodes.G

(index)->GetDevice (0);
Ptr<WifiNetDevice> wifi_dev

DynamicCast<WifiNetDevice> (dev);
wifi_dev->GetMac ()->SetAttribu

("BE_MaxAmpduSize", UintegerValue (0));
wifi_dev->GetMac ()->SetAttribute

("BE_MaxAmsduSize", UintegerValue (0));
}

// UDP Client application to be install in the
stations

UdpClientHelper echoClient(addres portNumber);

echoClient.SetAttribute("MaxPackets",
UintegerValue(100000));

echoClient.SetAttribute("Interval",
TimeValue(Seconds(periodSeconds)));

echoClient.SetAttribute("PacketSize",
UintegerValue(payloadSize));

// Desynchronize the sending applications
Ptr<UniformRandomVariable> x =

CreateObject<UniformRandomVariable> ();
x->SetAttribute ("Min", DoubleValue (min));
x->SetAttribute ("Max", DoubleValue (max));

double value = 1 + x->GetValue ();

ApplicationContainer sourceApplications =
echoClient.Install (wifiStaNodes.Get(index));

sourceApplications.Start(Seconds(value));
sourceApplications.Stop(Seconds(simulationTime+2));

}
}

Listing 5: Wi-Fi Periodic Traffic Specification

(7) Energy configuration: To keep trace of the consumed en-
ergy during the simulation, an energy source and a drain-
ing model have be configured on nodes. The energy source
can be seen as a battery from where the energy is drained
from. We use for that the BasicEnergySourceHelper
object that drains energy in a linear way. A non-linear drain-
ing can be also be considered and implemented using the
RVBatteryModelHelper object (more details about this
can be found in [10]).WifiRadioEnergyModelHelper
and LoRaRadioEnergyModelHelper objects are used
for the drainingmodels of the two technologies. They are two
models both based on state-machines which assign to each
physical state a current draw consumption in milliamperes
for Wi-Fi and LoRaWAN. An example of the Wi-Fi model is
given in Listing 7.
/* Installing energy models */
DeviceEnergyModelContainer deviceModels;

double capacityJoules = (batteryCap / 1000.0) * voltage *
3600;

WifiRadioEnergyModelHelper radioEnergyHelper;

radioEnergyHelper.Set ("IdleCurrentA", DoubleValue
(idleCurrent));

radioEnergyHelper.Set ("TxCurrentA", DoubleValue
(txCurrent));

radioEnergyHelper.Set ("CcaBusyCurrentA", DoubleValue
(ccaBusyCurrent));

radioEnergyHelper.Set ("RxCurrentA", DoubleValue
(rxCurrent));

BasicEnergySourceHelper basicSourceHelper;
basicSourceHelper.Set ("BasicEnergySupplyVoltageV",

DoubleValue (voltage));
basicSourceHelper.Set

("BasicEnergySourceInitialEnergyJ", DoubleValue
(capacityJoules));

EnergySourceContainer sources =
basicSourceHelper.Install(wifiStaNodes);

deviceModels = radioEnergyHelper.Install (staDevices,
sources);

Listing 6: Energy Configuration
(8) Trace files generation: There is the possibility in ns-3 of

generating pcap (Packet Capture) and trace files which con-
tain all the packets that have flowed through the network.
It can be done using the AsciiTraceHelper object for
some IoT technologies. To the best of our knowledge, there
is no tracing system (neither pcap nor trace files) proposed
using the LoRaWAN module. It is worth noting that pcap
files can be opened by software like Wireshark, while the
trace files can be read using any text editor.

(9) KPIs calculation: At the end of the template, we gather all
the wanted KPIs from our simulation, as the following:
• Packet Throughput: For this KPI, theGetTotalRx ()
and CountMacPacketsReceived () methods are
used for Wi-Fi and LoRaWAN respectively. Both meth-
ods return the amount of bytes received by a node. This
value is converted and divided by the simulation time to
get the throughput, in Mbps.

• Packet Delivery: The way to get the ratio of successfully
received of data over the total amount sent differs accord-
ing to the traffic type. In case it is periodic, we can simply
get it by dividing the simulation time by the packet period.
This will give us the number of received bytes, which we
divide by the number of sent ones to get the packet deliv-
ery. For the CBR case, in order to have a precise metric, we
added an attribute in the OnOff application that contains
the exact number of sent bytes. Then, we just divide it by
the same GetTotalRx () method used for the packet
throughput. Finally, if the traffic is VBR, we keep trace of
the number of sent bytes in a variable incremented with
each sending corresponding to a realization of the 𝑋 ran-
dom variable during the simulation. Then it is divided by
the results returned by the GetTotalRx () method.

/* Calculating packet throughput and packet delivery */
totalPacketsThrough = DynamicCast<PacketSink>

(sinkApplications.Get (0))->GetTotalRx ();
throughput += ((totalPacketsThrough * 8) /

((simulationTime) * 1024 * 1024)); // Mbps
std::cout << "Packet Throughput: " << throughput <<

std::endl;
double successRate = (totalPacketsThrough /

totalpacketsSent / nWifi) * 100;
std::cout << "Packet Delivery: " << successRate <<

std::endl; // %

Listing 7: KPIs Calculation



• Packet Latency: If the traffic is relatively low, we can
get it directly using the logging system of the simulator,
for each sent packet. In case the traffic is important, there
may be overloaded buffers in the sending nodes, which
will increase latency. It would be of benefit to get rid of
this problem since the latency in this case would more
depend on the buffer sizes than on the network state. A
way of doing so and getting a representative value of
the latency is by adding a probing node in the network,
which only sends data periodically in the same direction
as the other nodes in the network, and get the latency
only from the packets sent by this node. This allows us to
avoid the queue time in the nodes buffers. The objects we
install at the probing end-device and the gateway respec-
tively are the UdpEchoClient () UdpEchoServer
()which print the times of sending and arrival of packets.

• Energy consumption: The energy consumption is ob-
tained using theGetTotalEnergyConsumption ()
method of the energymodel which returns the total amount
of consumed energy, in joules. This method is called at
the end of the simulation, for one end-device, since we
consider that all of them have the same behaviour.

• Battery Lifetime: The battery lifetime is directly derived
from the energy consumption, by dividing the capacity
of the battery (in Joules) by the energy consumed, which
gives us the number of simulations of same length that
can be supported by the battery. We then multiply it by
the simulation time to get how much will the battery last
in seconds.

/* Calculating Energy KPIs */
double energy = 0, battery_lifetime = 0;
DeviceEnergyModelContainer::Iterator iter ;
for (iter = deviceModels.Begin (); iter !=

deviceModels.End (); iter ++) {
double energyConsumed =

(*iter)->GetTotalEnergyConsumption ();
NS_LOG_UNCOND ("End of simulation (" <<

Simulator::Now ().GetSeconds () << "s) Total
energy consumed by radio (End-device) = " <<
energyConsumed << "J");

std::cout << "Total energy consumed by radio
(End-device): " << energyConsumed << std::endl;

battery_lifetime = ((capacityJoules /
energyConsumed) * simulationTime);

battery_lifetime = battery_lifetime / 86400; // Days
std::cout << "Battery lifetime: " <<

battery_lifetime << std::endl;
energy = energyConsumed;
break; // Energy in only one station

}

Listing 8: Energy Calculation

5.2 Integration Guidelines: Example with
6LoWPAN

We now present guidelines to the community for contributing to
SIFRAN by writing new templates in order to enhance it with more
IoT network technologies. Overall, the structure of the templates
remains the same but obviously some parts need to be updated due
to the peculiarities of the newly considered technology. Table 1
summarizes the guidelines for each defined and labelled portion of
code. Table 1 also shows how to implement templates for the short
range IoT technology 6LoWPAN (based on 802.15.4 standard).

6 DISCUSSION
We discuss here the positioning regarding ns-3 and the contribution
it may bring to the networking industry and research community.
First, we would like to emphasize the fact that SIFRAN is inher-
ently limited by ns-3 itself, since the executed simulations are done
using it. This means that, in one hand, the possible simulateable
network technologies are the ones that are using ns-3, after having
defined their corresponding templates and implemented the user in-
terfaces. As stated in the previous section, these should not require
tremendous efforts: The major part is to make the IoT network
technology available in ns-3. In other hand, this also means that the
results (in terms of KPIs) provided by SIFRAN are the ones that ns-3
would have provided in a classical way, e.g., writing and executing
C++ scripts. Thus, no additional validation should be needed for
SIFRAN itself that is not required in ns-3. Regarding the impact on
the community, its design should be very helpful and, with the right
exposure to researchers and SMEs in both industry and academia,
should be quite impactful, as well.

7 CONCLUSION AND FUTUREWORKS
In this work, we have presented SIFRAN, a no-code framework
with the objective of enabling IoT simulation through ns-3 without
coding.We began by clearly identifying themost salient aspects that
need to be taken into consideration for simulating an IoT scenario,
and the required KPIs for the network performance evaluation.
Then, we detailed the architecture of SIFRAN which consists of
a web application, a database and ns-3 templates. The latter were
illustrated with the example of a Wi-Fi template and a LoRaWAN
one. We then provided guidelines to the community in the hope
that new IoT network modules will be developed in ns-3 and then
incorporated in SIFRAN. An example of how to proceed with the
example of 6LoWPAN has also been given.

The next step is to share the SIFRAN framework with IoT user
communities such as the ns-34 Group and the FIT IoT-Lab5 in order
to gather feedback from them.

In terms of future works, we plan to provide the following en-
hancements:

• Refine the web application to make it more user friendly,
taking into account feedback from the user community.

• Extend the list of supported technologies with additional
ns-3 templates.

• Extend SIFRAN to let it handle scenarios with multiple gate-
ways.

• Explore range of values for a given parameter to appraise its
influence over a KPI. One could for instance see the influence
of the number of end-devices on the battery lifetime.

A first version SIFRAN has just been made publicly available at
https://sifran.labs.stackeo.io/, while the source code is available at
https://github.com/Stackeo-io/SIFRAN. We hope that it will attract
contributions from other developers.
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Table 1: Integration Guidelines

Code
label Required changes Example with 6LoWPAN

1 Traffic parameters remain the same, while low-level parameters change de-
pending on the chosen IoT technology.

Declare here parameters such as the
Perimeter Area Network (PAN) id.

2 No changes. /

3 The layers must change since it is precisely here that the IoT technology layers
are specified.

Use the LrWpanHelper for the phy
and mac layers (802.15.4 norm) and the
SixLowPanHelper for the network
layer.

4 The low-level parameters which are specific to the IoT technology are set here. The ID of the PAN can be set here using
the AssociateToPan () method.

5
This part may remain the same in case the target IoT technology supports IPv4
addresses for the nodes. It can also change if the IP layer is not supported, or in
IPv6 must be used instead.

Use the Ipv6AddressHelper ob-
ject for the addressing process.

6 Depending on the traffic type, the same applications as for Wi-Fi can be used if
they are supported.

The OnOffHelper and
UdpClientHelper objects can
also be used for 6LoWPAN.

7
The energy source in this part remains the same, but the draining model should
correspond to the target IoT technology since each has its own PHY states and
corresponding current draw consumption.

No energy model is implemented for
6LoWPAN in the official release of ns-3.

8
This optional part here may be unavailable for some IoT technologies due to
the lack of implementation. We advice the community to refer to the Tracing
system in the ns-3 documentation to get more details about this.

The AsciiTraceHelper also pro-
vides pcap and trace files. for 6LoWPAN

9

• Packet throughput & Packet delivery: Since the same application as
for Wi-Fi can be used, the way of gathering packet throughput and packet
delivery is identical.

• Packet latency: As stated before, the probing mechanism can be used to get
the packet latency in the case the traffic is not periodic. Otherwise, using the
tracing or the logging system is sufficient.

• Energy consumption: The energy source remains the same, while themodel
should correspond to the IoT technology which has its own PHY states and
their current draw consumption.

• Battery lifetime: Just as for the energy source, the way of calculating how
long the battery will last in the scenario conditions is identical whatever the
IoT technology is.

The same way of calculating KPIs as for
Wi-Fi can be used for 6LoWPAN since
the same traffic applications are used.
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