Football Prediction Model

Disruptive Data Summer School, University of la Tuscia, ByTek Marketing Al, Viterbo, Italy

Team members:

- Samir Si-Mohammed
- Kristine Avagyan
- Taras Oliynyk
- Davide Momi
- Daniel Rocconi
- Emanuele D'Intino

Goal

 Develop a model that makes the prediction of the outcome of a match (Win, Draw, Model) from a huge amount of previous matches

Process

- 1. Explore the data
- 2. Clean the data
- 3. Merge the tables
- 4. Build the model (Test and Optimize)

Explore the data

- Country
- > 🗏 League
- > Match
- Match_Player_Attributes
- > Player
- > Player_Attributes
- > Team
- > Team_Attributes

Clean the data

GBH	GBD	GBA	BSH
Filtre	Filtre	Filtre	Filtre
1.78	3.25	4	1.73
1.85	3.25	3.75	1.91
2.5	3.2	2.5	2.3
1.5	3.75	5.5	1.44
4.5	3.5	1.65	4.75
4.5	3.4	1.7	NULL
1.85	3.25	3.75	2.1
2.8	3.2	2.25	2.88

```
toDrop = []
for i in betWins:
    toDrop.append(i)
for i in betDraws:
    toDrop.append(i)
for i in betLoss:
    toDrop.append(i)
tempMatch = tempMatch.dropna(axis=0, how='all', thresh=None, subset=toDrop, inplace=False)
toDrop = ['goal', 'shoton', 'shotoff', 'foulcommit', 'card', 'cross', 'corner', 'possession']
tempMatch = tempMatch.drop(columns=toDrop)
#Fill the Null values of bet scores
newMatches = pd.DataFrame()
for row in tempMatch.iterrows():
    #Get the columns into Pandas dataframes
    valuesBetWins = row[1][betWins]
    valuesBetDraws = row[1][betDraws]
    valuesBetLoss = row[1][betLoss]
    #Calculate the average for each one
    avgBetWins = valuesBetWins.mean(skipna=True)
    avgBetDraws = valuesBetDraws.mean(skipna=True)
    avgBetLoss = valuesBetLoss.mean(skipna=True)
    #Replace the Null values
    for i in betWins:
       if str(row[1][i]) == 'nan':
            row[1][i] = avgBetWins
```

Merge the tables

➤ ■ Player	
📄 id	INTEGER
player_api_id	INTEGER
player_name	TEXT
player_fifa_api_id	INTEGER
birthday	TEXT
height	INTEGER
weight	INTEGER
✓ ■ Player_Attributes	500 500 500 500
id id	INTEGER
player_fifa_api_id	INTEGER

Normalization - Standardization

```
import getNumericalData
from sklearn import preprocessing
import pandas as pd
train set = pd.read csv('dataTrain.csv')
test set = pd.read csv('dataTest.csv')
#drops the target column
y train = train set.final score
x train = train_set.drop(labels='final_score', axis=1)
y test = test set.final score
x_test = test_set.drop(labels='final_score', axis=1)
#MinMax scaler, it does not distort data
mm_scaler = preprocessing.MinMaxScaler()
mm_scaled_x_train = mm_scaler.fit_transform(x_train)
mm_scaled_x_test = mm_scaler.fit_transform(x_test)
#Standard Scaler in case of the normal distribution
std_scaler = preprocessing.StandardScaler()
std_scaled_x_train = std_scaler.fit_transform(x_train)
std_scaled_x_test = std_scaler.fit_transform(x_test)
#Normalization of the data processed by Standard Scaler
normalized_std_train = preprocessing.normalize(std_scaled_x_train)
normalized_std_test = preprocessing.normalize(std_scaled_x_test)
```

Build the model

```
#Initializing classifiers
RF_clf = RandomForestClassifier(n_estimators = 200, random_state = 1, class_weight = 'balanced')
AB_clf = AdaBoostClassifier(n_estimators = 200, random_state = 2)
GNB_clf = GaussianNB(priors=None, var_smoothing=le-05)
KNN_clf = KNeighborsClassifier()
clfs = [RF_clf, AB_clf, GNB_clf, KNN_clf, LOG_clf]

for clf in clfs:
    pca_X_train = normalized_std_train
    pca_X_test = normalized_std_test
    clf.fit(pca_X_train, y_train)
    print("Score of {} for training set: {:.4f}.".format(clf.__class__.__name__, accuracy_score(y_train, clf.predict(pca_X_train print("Score of {} for test set: {:.4f}.".format(clf.__class__.__name__, accuracy_score(y_test, clf.predict(pca_X_test))))
    print(classification_report(y_train, clf.predict(pca_X_train)))
```

Compare the models

		oostClassifi oostClassifi			
		precision	recall	f1-score	support
	-1	0.84	0.75	0.79	537
	0	0.69	0.55	0.61	515
	1	0.69	0.82	0.75	894
accı	uracy			0.73	1946
macro	avg	0.74	0.71	0.72	1946
weighted	davg	0.73	0.73	0.73	1946

				training se test set: 0	
Score or				f1-score	
	-1	0.52	0.67	0.58	537
	0	0.52	0.41	0.46	515
	1	0.72	0.68	0.70	894
accur	acy			0.61	1946
macro	avg	0.59	0.59	0.58	1946
weighted	avg	0.61	0.61	0.60	1946

THE RESERVE OF THE PERSON NAMED IN COLUMN 1			training stest set:	set: 0.5139.	
30010 01	Guuss		recall		support
	-1	0.48	0.65	0.55	537
	0	0.38	0.41	0.40	515
	1	0.67	0.49	0.56	894
accur	acy			0.51	1946
macro	avg	0.51	0.52	0.50	1946
weighted	avg	0.54	0.51	0.52	1946

Reminder: Metrics meanings

From the confusion matrix we can create several indicators of good performances.

TP=True Positive, TN=True Negative, FP=False Positive, FN=False Negative.

$$Accuracy = \frac{TP + TN}{Total}$$

Accuracy (fraction of correct predictions)

$$Precision = \frac{TP}{TP + FP}$$

Precision
(fraction of correct predictions "positive")

$$Recall = TPR = \frac{TP}{TP + FN}$$

Recall or True Positive Rate (fraction of correct "positive" over positive condition)

$$FPR = \frac{FP}{TN + FP}$$

False Positive Rate (fraction of wrong "positive"'s over negative condition)

Optional (Players clusters)

```
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

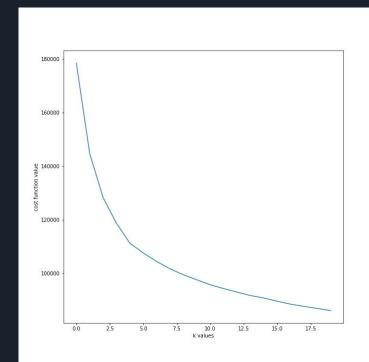
A = df
for k in range (1, 21):
    # Create a kmeans model on our data, using k clusters. random_state helps ensure that the algorithm
returns the same results each time.
    kmeans_model = KMeans(n_clusters=k, random_state=1).fit(A.iloc[:, :])

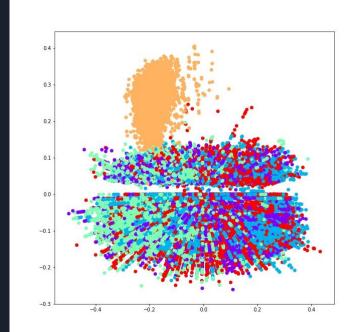
# These are our fitted labels for clusters -- the first cluster has label 0, and the second has label

1.
    labels = kmeans_model.labels_

# Sum of distances of samples to their closest cluster center
interia = kmeans_model.inertia_
    print("k:",k, " cost:", interia)
```

Optional





Conclusion

- 1. Build a model from scratch
- 2. Manipulate messy data
- 3. Solve a real problem using ML
- 4. Work in group from different domains

Perspectives

- 1. Try our model on different leagues
- 2. Enrich our model with other data
- 3. Try to even predict the score
- 4. Try the same process with other sports

Thank you!

Any question?

(Filippo there you go)