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Abstract Wireless networks are widely used for a wide range of applications,
from best-effort object tracking solutions to robot control in smart factories. How-
ever, the performance of these networks is highly dependent on their configuration.
Worse, the different links have heterogeneous characteristics, and a homogeneous
configuration is often suboptimal. We believe that digital twins are an excellent tool
for achieving autonomous networks that can automatically reconfigure themselves
based on conditions. To this end, digital twins of networks must be able to incorpo-
rate this heterogeneity into their models and capture the impact of a configuration
on the performance of a given radio link. We therefore propose here a link-oriented
prediction model, able to predict the expected Packet Reception Rate for a given
MAC configuration. Our experimental evaluation demonstrates the relevance of a
data-driven prediction method to capture the links specificities.

1 Introduction

Wireless networks are vital to modern communication, facilitating connectivity
among devices, systems and people. Their role extends beyond personal communi-
cation and entertainment, impacting crucial areas such as healthcare or smart cities.
In Industry 4.0, wireless networks are transformative, enabling seamless connec-
tivity for technologies like the Internet of Things (IoT) and real-time data analyt-
ics. This connectivity empowers a new generation of services, including predictive
maintenance and improved supply chain management.

The growing complexity of wireless networks has highlighted the need for ad-
vanced tools to design, monitor, and optimize their performance. Among these tools,
Digital Twins (DTs) are emerging as a key enabler, providing a powerful framework
to replicate network behavior in a virtual environment. A Digital Twin is a digital
representation of a physical entity or system continuously updating and evolving
based on real-time data. By leveraging DTs for wireless networking, it becomes
possible to explore the interplay of diverse configurations and environmental condi-
tions without extensive real-world testing.
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A critical challenge in this context is to predict the behavior of an unknown
configuration based on previously observed data. This challenge is particularly
significant for wireless networks (e.g., IEEE 802.15.4) where varying configura-
tions—such as MAC parameters—can result in highly heterogeneous performance
outcomes. Generalization in DTs refers to the ability of a model to accurately pre-
dict outcomes across different unseen scenarios. In wireless networking, it means
the prediction of Key Performance Indicators (KPIs) without having tested the cor-
responding configurations.

To address these challenges, experimental studies play a crucial role in advanc-
ing IoT research by bridging the gap between theoretical models and practical im-
plementations. Several works have leveraged testbeds to evaluate network perfor-
mance, including latency, throughput, and link heterogeneity [1, 2]. Additionally,
extensive research has focused on optimizing MAC parameters in wireless stan-
dards like IEEE 802.15.4 and Wi-Fi, employing machine learning techniques to
enhance throughput, minimize latency, and improve energy efficiency [3, 4]. These
approaches span simulation and real-world deployments, addressing various metrics
and configurations for network performance optimization.

In contrast to prior works, we adopt an innovative approach by considering a sep-
arate predictive model for each link constituting a wireless network. This granularity
accounts for the unique characteristics of each link, resulting in high prediction ac-
curacy and low error rates. Our approach is data-driven to create a building block of
the future DT for wireless networks. Our contributions are as follows:

1. A thorough analysis of an experimental deployment, providing insights into:

• The heterogeneity of wireless links.
• The impact of configurations on network performance.
• The link-specific nature of configuration effects.

2. A data-driven prediction method to estimate the performance impact of pre-
viously unseen configurations. We notably show that a link-specific model re-
duces significantly prediction errors: a unified model is insufficient.

2 Related Works

Experimental studies are vital for bridging the gap between theoretical models and
real deployments. Some works have investigated the performance of IoT networks
using different technologies and testbed environments. For instance, [1] explore
RPL over IEEE 802.15.4 networks with a focus on latency. Using the FIT IoT-
LAB testbed, they evaluate the delay and throughput of links under varying message
sizes and transmission frequencies. Meanwhile, [2] delve into the heterogeneity of
FIT IoT-LAB [5] deployments, studying the realism of testbeds by identifying phe-
nomena such as external interference, multi-path fading, and dynamic connectivity.
They showcase the links’ heterogeneity in the Grenoble site of the platform. Fraile
et al. [6] provide a detailed experimental study to quantify the impact of the MAC
parameters on the network performance. In particular, they highlight that the MAC
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behavior of LoRa is strongly dependent on the Spreading Factor and the Bandwidth
parameters.

The optimization of MAC parameters in wireless standards has attracted much
attention in the past. Aboubakar et al. [3] use multilayer perceptron, random for-
est, K-nearest Neighbors (k-NN) and decision trees to identify the optimal values of
the MAC parameters, aiming to minimize end-to-end delay. Similarly, Alkaseem et
al. [7] present an Artificial Neural Network-based approach for estimating optimal
IEEE 802.15.4 MAC parameters. Using simulation, they predict configurations that
best improve the end-to-end transmission delay. However, these optimization tech-
niques use simulations for training. Unfortunantely, simulators’ accuracy strongly
depends on the physical layer models’ accuracy [8]. PHY models often deviate sig-
nificantly from real-world conditions [9].

Karmakar et al. [4] propose an online learning-based solution for Wi-Fi net-
works. They tune channel bandwidth, MCS values, and the number of MIMO an-
tennas to achieve high throughput in Wi-Fi-based topologies. In contrast, Chen et
al. [10] adopt a deep learning approach to adapt the Contention Window. Their data
is generated via simulations covering various conditions. Furthermore, [11] intro-
duce an algorithm to dynamically adjust the level of 802.11n frame aggregation
by Wi-Fi stations, targeting both QoS optimization and improved energy efficiency,
particularly under network congestion. Still, these approaches rely extensively on
simulations.

Data-driven methods and digital twins have garnered significant attention for
their ability to capture network characteristics and predict potential outcomes through
“what-if" scenarios. For example, in [12], the authors introduce a Network Digital
Twin designed to optimize the configuration of 802.15.4 networks using a heuristic
and an online learning algorithm. In the same vein, Masaracchia et al. [13] high-
light that Network Digital Twins (NDT) enable the integration of AI modules that
generate insights from real-time data, allowing the system to evolve as deployment
progresses by optimizing network operational parameters. They suggest that AI-
enabled NDT can support network design by evaluating different scenarios in var-
ious contexts to identify the optimal configuration for maximizing QoS. In gen-
eral, machine learning and statistical techniques have demonstrated their potential
in providing relevant and actionable insights by leveraging empirical data. These
approaches are especially crucial for generating reliable predictions within NDT
frameworks.

3 Problem Statement

Wireless networks are known to be lossy, and retransmissions represent a way to
make the communication more reliable. Unfortunately, increasing the number of
retransmissions increases congestion and impacts negatively both the latency and
the energy efficiency. Similarly, defining the backoff value has also an impact on the
collision probability.
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The network configuration is most of the time defined when the network is de-
ployed. We propose here to use a digital twin that collects metrics of performance
in real-time to predict the behavior of the different links, and thus their optimal
configuration. Since the number of configurations increases exponentially with the
number of parameters to tune, we need to predict the performance for unknown (i.e.,
untested) configurations.

We propose here an experiment-driven approach. We leverage a large-scale wire-
less testbed that runs an IEEE 802.15.4/6LoWPAN stack. IEEE 802.15.4 employs
CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) prone to col-
lisions. More specifically, we focus on the following parameters:

• macMinBE and macMaxBE (Backoff Exponent), which define the initial and
the maximum backoff exponent value, from which is derived the backoff value;

• macMaxCSMABackoffs, which limits the number of backoff attempts before
a transmission is abandoned. When the medium is still idle after this number of
attemps, the packet is dropped;

• aMaxFrameRetries which sets the maximum number of retries for a frame in
case of transmission failures.

Each of these parameters can take multiple values, creating a vast exploration
space of possible configurations (> 2,000 configurations), each with potentially sig-
nificant effects on network performance [12]. Thus, it is crucial to find optimized
configurations for specific application needs and environments.

Suppose a network is deployed, and a node has experienced a series of configura-
tions C = [C1, . . . ,Cn], each associated with a corresponding resulting performance
metric KPI = [K1, . . . ,Kn]. Our objective is to develop a model capable of accurately
predicting the performance impact Km of a configuration Cm that the node has not
yet encountered (i.e., Cm /∈C).

4 Deployment Analysis

We first characterize the heterogeneous impact of the network configuration on the
performance. For this purpose, we use the large-scale FIT IoT-Lab wireless testbed
(https://www.iot-lab.info/) to conduct our experiments.

4.1 Experimental Setup

We run a 20-hour experiment on the Grenoble site. We consider a single-hop (cel-
lular) topology where a gateway collects packets from 8 M3 motes. We mimic a
realistic smart building scenario, where the different motes are distributed in a cor-
ridor, at a different distance from the gateway (cf. Figure 1). The building also hosts
other (e.g., Wi-Fi) networks that may create interference. We used the Contiki-NG
operating system to run the 802.15.4 protocol stack.
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Fig. 1 Nodes placement in the FIT IoT-Lab indoor room in the Grenoble site.

Parameter Value range

macMinBE 3−8
macMaxBE 4−10
macMaxCSMABackoffs 1−8
aMaxFrameRetries 1−7

Table 1 Medium Access Control parameters.

Each mote generates Constant Bit Rate traffic toward the gateway at a rate of one
packet per second. We consider the MAC configuration is updated for all the nodes
every 100 seconds. It is worth noting that each mote may have a different MAC
configuration, but the change is triggered synchronously for all the motes. Table 1
shows the value range for each considered parameter.

As a Key Performance Indicator, we use the number of (re)transmissions required
before a packet is delivered from a mote to the gateway. More precisely, we collect
for each link (mote → gateway) two time-series:

1. Configurations: Cl = [Cl,1, . . . ,Cl,k], where Cl,i denotes the configuration used
by the link l for the ith time interval. We denote by C the set of all the possible
configurations;

2. Packet Reception Rate: PRRl = [PRRl,1, . . . ,PRRl,k], where PRRl,i denotes the
average Packet Reception Rate achieved by the transmissions through the link l
for the time interval i. More precisely, the PRR is computed with the ratio of the
packets received by the gateway, and the packets transmitted through the link l.

4.2 Experimental Characterization of the Diversity

Figure 2 illustrates the reception rate achieved individually per mote for a specific
configuration. A Packet Reception Rate close to 1 means that a unique transmission
is sufficient to deliver the packet to the gateway. Inversely, red values of the PRR
(close to 0) correspond to very unreliable links. For simplicity, each link is referred
to by its transmitter (i.e., mote) in the rest of this section.

We can note that a given configuration (e.g., (6, 9, 3, 3)) may be very good for
some links (e.g., m3-133) and very bad for other ones (e.g., m3-166). This result
may be quite obvious since a bad link provides a high Packet Error Rate at the
PHY layer, impacting negatively the reliability. However, it is also interesting to
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Fig. 2 Mean reception rate for common configurations to different links.

note that the optimal configuration in the considered set is different for each link:
m3-123 should use (4, 9, 2, 2) while link m3-166 should use (6, 8, 2, 1). Thus, the
configuration has to be adapted to each link, which is seldom the case in the
literature.

Even more interesting, the PRR varies non-uniformly for all the links. For in-
stance, m3-159 has a much higher PRR for configuration (6, 7, 6, 6), and a bad
PRR for contiguous configuration, which is the inverse for m3-159. Thus, we must
implement a per-link strategy: a model should map the expected PRR to each
link and configuration, and this is the objective we tackle in the next section with a
data-driven model.

5 Data-driven Link Quality Prediction

In this section, we detail a solution for building a data-driven model to predict con-
figuration performance. We begin by outlining the data preparation process and how
it is split into training and testing sets, followed by a description of the model train-
ing process.

5.1 Data Preparation

To predict configuration performance accurately, we prepare data as follows:

1. Mean Reception Rate (PRRl,c): the mean Packet Reception Rate for the link l
and for a specific configuration c. Indeed, a configuration is randomly chosen and
may be tested several times (or never) for a specific link:
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PRRl,c =
1

|{i ∈ N| Cl,i = c}| ∑
i∈N|c=Cl,i

PRRl,i (1)

2. Input of the Prediction model consists of the configuration parameters (c ∈ C )
for the link l;

3. Output of the Prediction model is the mean reception rate (PRRl,c) correspond-
ing to the input configuration c.

5.2 Model Training

We target lightweight prediction models: we must minimize the computational com-
plexity of the prediction model. Indeed, one model should be executed continuously
for each link. To be sustainable, the Digital Twin must present a reasonable compu-
tational complexity. Thus, we use classical regression models to predict the mean
reception ratio for a given configuration:

1. Support Vector Regression (SVR): it aims to find a hyperplane in a high-
dimensional feature space that has the maximum margin from the training data
points [14].

2. Gradient Boosting: it builds a set of prediction models in a sequential manner. It
combines these models to create a more through the reduction from each model
of the errors made by the previous models [15],

3. Decision Trees: it splits the data into subsets based on the value of input features,
creating a tree-like structure where each node represents a feature, each branch
represents a decision rule, and each leaf node represents an outcome [16].

These models are particularly appealing due to their low computational complexity,
although more complex models. Instead of selecting one model, our Digital Twin
acts rather as a meta-model, capable of selecting the most suitable model for each
link. Indeed, we are convinced that a trade-off between accuracy and computational
complexity exists. Thus, our solution switches models on-the-fly when necessary
(see Figure 3).

We explore three distinct approaches to train our prediction models:

1. Global Regression: to maximize the training dataset, we consider all the links
together. That’s a classical assumption in the literature: a generic model is derived
to estimate the Key Performance Indicator of the MAC layer from the MAC pa-
rameters. A single, generalized model aimed at predicting the mean reception
rates for any given link assuming they present all the same behavior. While there
are unique characteristics for each link, training on the aggregated data can help
capture broad network patterns that apply to all links. Thus, we propose here to
exploit training data containing all the links combined in the same dataset. This
global dataset serves as the training data for our regression model to predict the
expected Packet Reception Rate from the input configuration.
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Fig. 3 Prediction models are trained with data coming from the network and can be used to predict
the outcome (i.e., Packet Reception Rate) of unexplored configurations.

2. Single-Link Regression: we propose to consider each link separately. Thus, each
link has its own specialized model for making predictions. This approach of-
fers a more personalized and targeted prediction for each link’s performance.
The trade-off, however, is the need for more training data and computational re-
sources, as each model must be created and maintained separately. This approach
may increase the accuracy of the prediction, but may lead also to over-fitting.
We use one dataset per link to predict the Packet Reception Rate.

3. Single-link k-NN: we use similar configurations to make our predictions for a
specific (untested) configuration. We assume here that similar configurations re-
sult in similar performance metrics, making it a straightforward but possibly less
precise approach compared to more sophisticated models. More precisely, we
test the k-means algorithm, which clusters the data points (of the training set)
based on their similarity by minimizing the within-cluster variance, and uses the
mean reception rate of the closest cluster as the prediction.

Each approach offers unique advantages depending on the specific scenario.
While global regression ensures generalization across links, the single-link regres-
sion emphasizes link-specific behavior, potentially improving prediction accuracy
for unique environmental conditions. Sink-link k-NN exploits only the closest con-
figurations, which may lead to suboptimal predictions if the tested configurations
are old, or with significantly different parameters.
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5.3 Data Splitting

We must consider the temporality: recent measurements should be preferred to the
old ones. Indeed, conditions are time-variant (e.g., external interference, obstacles).
Thus, we split the dataset chronologically: the first S% of configurations (based on
temporal order) are used as training data, and the rest of the configurations are used
for testing.

(Cl,1,PRRl,1), . . . ,(Cl,k,PRRl,k)︸ ︷︷ ︸
Training data

,(Cl,k+1,PRRl,k+1), . . . ,(Cl,n,PRRl,n)︸ ︷︷ ︸
Testing data

This approach ensures that the model reflects the temporal evolution of configu-
rations, making the testing phase closer to real-world scenarios.

6 Evaluation

We compare the three approaches described in the previous section. We ran our
20-hour experiments 6 times to make our evaluation more robust and averaged the
corresponding results. The configuration stays unchanged but competing experi-
ments may run on the testbed, or Wi-Fi traffic may vary. We measure the prediction
accuracy of each method with the Mean Squared Error (MSE), defined as follows:

MSE(l) =
1
n

n

∑
i=1

(
PRRl,i − P̂RRl,i

)2
(2)

with PRRl,i is the observed PRR value for the link l and the interval i while P̂RR(l, i)
is the predicted one.

6.1 Global Comparison

Figure 4 illustrates the Mean Squared Error (MSE) on the testing data, with the first
70% of the data used for training and the remaining 30% for testing. As observed,
the accuracy is higher for all the links with the single-link regression model: only
the measurements of the links are used to construct the model. This aligns with our
earlier observation: the links are highly heterogeneous, and merging them into a sin-
gle model leads to the loss of unique features that characterize each link. The global
regression model may use the data from very different links, leading to poor pre-
diction values for the unusual links (e.g., m3-123). The single-link k-NN approach
yields comparatively poor results, performing worse than the other approaches. This
is primarily due to the complexity of capturing the intricate relationships and high
variability across links using a distance-based method. As it relies heavily on the
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Fig. 4 Comparison of the three approaches on the given deployment.

similarity between data points, it performs poorly in heterogeneous environments
where links exhibit highly diverse behaviors.

Interestingly, the performance gap is even more pronounced for links that exhibit
distinctly different characteristics from others—for example, m3-123, which has the
best link quality in the network. Lastly, the obtained MSE values are sufficiently low
(≤ 0.08), demonstrating that the proposed approach can accurately predict the mean
reception ratio of an unknown configuration with minimal average error.

6.2 Impact of the training length

Next, we examine the impact of the dataset’s training length. A shorter training pe-
riod might enhance responsiveness to time-variant relationships. However, it could
also reduce prediction accuracy due to the smaller amount of data available for
model training.

Figure 5 shows the distribution of prediction errors for the three approaches
across various split ratios, ranging from 0.1 to 0.7 (i.e., with 10% to 70% of the
dataset used for training). To minimize bias, the testing set remains fixed at the next
30% of the dataset, regardless of the split ratio.

As shown in the figure, single-link regression consistently outperforms the other
methods across all split ratios. For certain links (e.g., m3-123), increasing the train-
ing dataset size noticeably reduces prediction errors. However, for most links, the
error remains relatively stable. This stability likely stems from the fact that link be-
havior, on average and over extended periods, tends to be relatively stationary. Con-
sequently, adding more data does not always yield significant performance gains.
Nevertheless, links experiencing temporary disturbances may benefit more from
larger training datasets. Finally, the results indicate that global regression can deliver
satisfactory performance when the target link shares similar characteristics with the
rest of the network.
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Fig. 5 Comparison of the three approaches on the given deployment, according to the train/test
split.

7 Conclusion

In this work, we tackled the challenge of developing predictive models to assess
the impact of unknown configurations, focusing specifically on MAC parameters in
IEEE 802.15.4 networks and their effect on the number of (re)transmissions. We
proposed and compared three modeling approaches: i) a global regression model,
ii) a single-link regression model, iii) a single-link k-NN model. Using a real-world
testbed, we deployed a wireless network and conducted an in-depth analysis that
revealed the heterogeneity of link behaviors, and thus the interest of the single-
link models. The single-link regression model predicts with a very good accuracy
the link quality for unknown configurations. Our models constitute a solid piece of
work to be integrated into a Digital Twin for wireless networks.

In future work, we plan to expand this study by incorporating additional perfor-
mance metrics, such as latency and jitter, to provide a more comprehensive analysis.
We need also to go one step further to integrate these models in the future Digital
Twins for wireless networks. We have also to reduce the volume of measurements
to use for training, to reduce both the overhead and the computational complexity.

Code sharing: For the sake of reproducibility, we provide the source code/dataset in the following
link: https://github.com/SamirSim/NDT-Generalization
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